A 2,3-cis-selective synthesis of aziridines bearing a vinyl group from allyl methyl carbonates and allyl mesylates

Hiroaki Ohno, Kiyonori Ishii, Asami Honda, Hirokazu Tamamura, Nobutaka Fujii, Yoshiji Takemoto and Toshiro Ibuka *

Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

Received (in Cambridge) 3rd September 1998, Accepted 28th September 1998

Abstract

A convenient method for the synthesis of synthetically useful chiral 2 -vinylaziridines from natural α-amino acids is described. Satisfactory 2,3 -cis-selectivities are obtained by exposure of methyl carbonates of various allylic alcohols bearing an N-protected amino group to a catalytic amount of tetrakis(triphenylphosphine)palladium $(0), \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, in aprotic solvents such as THF. Base-promoted aziridination of mesylates of various N -protected amino allylic alcohols followed by $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ catalyzed isomerization for the 2,3-cis-selective synthesis of vinylaziridines is also presented.

The N-activated or N-unactivated aziridines bearing an alkenyl group on one of the aziridine-ring carbon atoms have proven to be extremely valuable intermediates in synthetic chemistry today. Due to their very high reactivity and ability to function as carbon electrophiles, vinylaziridines and their analogues have been used as intermediates for the synthesis of azinomycin, ${ }^{1} \beta$-lactams, ${ }^{2}(R)$-(- -dysidazirine, ${ }^{3}$ azacycles such as 2,6-disubstituted tetrahydropyridines, ${ }^{4}$ indolizidine alkaloids, ${ }^{5}$ pyrrolizidine alkaloids, ${ }^{6}$ allyl imines, ${ }^{7}$ allyl amines, ${ }^{8}$ sphingosines, ${ }^{9}$ 3,7-disubstituted tetrahydroazepinone ${ }^{10}$ and alkene dipeptide isosteres. ${ }^{11}$

One of the simplest methods for the synthesis of dipeptide isosteres such as $\mathbf{6}$ and 7 via vinylaziridines of type $\mathbf{4}$ and 5 involves the use of anti- and syn-amino alcohols $\mathbf{2}$ and $\mathbf{3}$ which, in turn, could be synthesized from chiral amino aldehydes 1 by treatment with vinylic organometallic reagents (Scheme 1).

Scheme 1 Reagents: i, vinyl-M $(\mathrm{M}=\mathrm{Li}, \mathrm{Mg}$, etc. $)$; ii, $\mathrm{PPh}_{3}-\left(\mathrm{NCO}_{2} \mathrm{Et}\right)_{2}$ $\mathrm{R}^{1}=$ alkyl, aryl; $\mathrm{R}^{2}=\mathrm{Boc}, \mathrm{Ts}$, etc.; $\mathrm{R}^{3}=$ alkyl.

However, when a chiral N-protected amino aldehyde $\mathbf{1}$ is reacted with excess vinylmagnesium bromide, vinyllithium, or vinylzinc halide a mixture of diastereomers $\mathbf{2}$ and $\mathbf{3}$ is always obtained in only moderate yields, even after extended periods, presumably due to enolization of the amino aldehydes to form the corresponding magnesio enolates. ${ }^{12,13}$ In addition, the diastereomeric mixture of amino alcohols 2 and 3 derived from N-protected amino aldehydes such as (S)-alaninal and (S)-leucinal can be separated only with difficulty by repeated flash chromatography. ${ }^{12,14}$ Moreover, the ratio of 2 and 3 is unpredictably highly dependent on the structure of the amino aldehyde, the reagent, the nature of the N-protective group, ${ }^{12}$ the use of additives like boron trifluoride, ${ }^{15}$ zinc chloride, ${ }^{15}$ cerium trichloride ${ }^{16}$ and diethylaluminum chloride, ${ }^{15}$ and the
solvent of the reaction. ${ }^{12}$ It has been reported that the stereochemistry at the α-carbon in isosteres $\mathbf{6}$ and 7 is one of the essential factors for biological activity. ${ }^{17}$ We also recently reported that some peptides containing a dipeptide isostere 7 are more potent than peptides containing a dipeptide isostere $6 .{ }^{18}$ In our continuing synthetic study of biologically active polypeptides containing an (E)-alkene dipeptide isostere, we were in need of a stereoselective synthetic route to 2,3-cis-aziridines 5, which can be used to generate (E)-alkene dipeptide isosteres 7 with the desired stereochemistry at the α-position.

Since the discovery of the palladium-catalyzed reactions of allylic carbonates by Tsuji and co-workers, ${ }^{19,20}$ the method has become an important tool for synthetic chemists today. As shown in Scheme 2, we anticipated that, by employing

Scheme $2 \mathrm{R}^{1}=$ alkyl, aryl, etc. $; \mathrm{R}^{2}=\mathrm{Boc}, \mathrm{Ts}$, etc. $; \mathrm{L}=\mathrm{PPh}_{3}$.
recent advances in palladium-catalyzed reactions of alkenylaziridines, ${ }^{2,21,22}$ the palladium(0)-catalyzed reaction of readily available methyl carbonates $\mathbf{8}$ of amino allyl alcohols would aid in producing the desired, thermodynamically more stable 2,3 -cis-isomers 5 predominantly via π-allyl palladium complexes \mathbf{A} and \mathbf{B}. Until now, a palladium(0)-catalyzed reaction of methyl allylic carbonates $\mathbf{8}$ for constructing synthetically important vinylaziridines has no precedent as far as we are aware. Detailed here is a new straightforward method for the synthesis of 2,3-disubstituted vinylaziridines 5 in a 2,3-cisstereoselective manner from methyl carbonates $\mathbf{8}$ and methanesulfonates (mesylates) $\mathbf{9}$ of N -protected amino allylic alcohols.

Results and discussion

Synthesis of the methyl carbonates and mesylates of N -arylsulfonyl allylic alcohols

For the present study, it seemed that N-protection by the introduction of a strong electron-withdrawing group on the nitrogen atom was desirable. The choice of arylsulfonyl [e.g., 2,4,6trimethylphenylsulfonyl (Mts), 2,2,5,7,8-pentamethylchroman6 -ylsulfonyl (Pmc), ${ }^{23}$ and 4-methoxy-2,3,6-trimethylphenylsulfonyl (Mtr) ${ }^{24}$] as both activating and protecting groups was based primarily on their ease of deprotection.

As shown in Scheme 3, the requisite chiral methyl allylic

Scheme 3 Abbreviations: Mts = 2,4,6-trimethylphenylsulfonyl; Ts = p-tolylsulfonyl; $\quad \operatorname{Pmc}=2,2,5,7,8$-pentamethylchroman-6-ylsulfonyl; $\mathrm{Mtr}=4$-methoxy-2,3,6-trimethylphenylsulfonyl. Reagents: i, $(\mathrm{COCl})_{2}-$ DMSO $-(i-\mathrm{Pr})_{2} \mathrm{NEt}$; ii, $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}$; iii, DIBAL; iv, $\mathrm{ClCO}_{2} \mathrm{Me}-$ pyridine; v , $\mathrm{MeSO}_{2} \mathrm{Cl}-\mathrm{Et}_{3} \mathrm{~N}$.
carbonates (22-25 and 33) and the mesylates (26-29 and 34) of N -arylsulfonyl amino alcohols were prepared in acceptable yields starting from the N-arylsulfonyl amino alcohols (10-13 and 30) which, in turn, could be prepared from (S)-valinol, ${ }^{25}$ (S)-leucinol, ${ }^{26} \quad(S)$-phenylalaninol ${ }^{25}$ and (S)-isoleucinol. ${ }^{25}$ Typically, the known N-protected (S)-valinol $\mathbf{1 0}^{\mathbf{2 1 c}}$ was treated successively with oxalyl chloride-DMSO- N, N-diisopropylethylamine and [(methoxycarbonyl)methylene]triphenylphosphorane to afford the (E)-enoate $\mathbf{1 4}$ which, on reduction with DIBAL, yielded the allylic alcohol 18. Conversion of the alcohol $\mathbf{1 8}$ into both the carbonate $\mathbf{2 2}$ or the mesylate $\mathbf{2 6}$ was accomplished following standard procedures (see the Experimental section). The other chiral methyl allylic carbonates (2325 and 33) and mesylates (27-29 and 34) listed in Scheme 3 were prepared from the corresponding N-protected amino alcohols (11-13 and 30) by a sequence of reactions similar to that described for the synthesis of the carbonate $\mathbf{2 2}$ and the mesylate 26 (see Experimental section).

In a similar manner, the N-protected amino alcohols 35-37, readily available from methyl (S)-serinate hydrochloride, ${ }^{12}$ O-benzyl- N-tert-butoxycarbonyl-(S)-serine, ${ }^{27}$ and (S)-threonine, were converted into the corresponding methyl allylic carbonates $44-46$ and the allylic mesylates 47-49 via the sequence of reactions shown in Scheme 4.

Finally, (E)-geometrical assignments for the α, β-enoates (14-

Scheme 4 Reagents: i, $(\mathrm{COCl})_{2}-\mathrm{DMSO}-(i-\mathrm{Pr})_{2} \mathrm{NEt}$; ii, $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2}-$ Me ; iii, DIBAL; iv, $\mathrm{ClCO}_{2} \mathrm{Me}-$ pyridine; $\mathrm{v}, \mathrm{MeSO}_{2} \mathrm{Cl}-\mathrm{Et}_{3} \mathrm{~N}$.

17, 31 and $38-40$), the methyl carbonates ($22-25,33$ and $44-46$), and the mesylates ($\mathbf{2 6}-\mathbf{2 9}, \mathbf{3 4}$ and 47-49) presented in Schemes 3 and 4 were ascertained from the coupling constant ($c a .15 .5 \mathrm{~Hz}$) of the two olefinic protons by ${ }^{1} \mathrm{H}$ NMR spectral analysis. In addition, optical purities of all α, β-unsaturated esters (14-17, 31 and $\mathbf{3 8 - 4 0}$) as well as allylic alcohols (18-21, 32 and 41-43) have been determined by HPLC with a chiral stationary phase (CHIRALCEL OD column; hexane-propan-2-ol $=97-85: 3-$ 15). Except for compounds 39 (ee 88%) and 42 (ee 88%) bearing a benzyloxy group, all other compounds were found to be essentially optically pure (ee $>98 \%$). Data for the optical purities of these compounds are listed in Table 1.

Palladium(0)-catalyzed aziridination reactions of methyl carbonates of \boldsymbol{N}-arylsulfonyl amino alcohols

Having synthesized substrates for the possible palladium(0)catalyzed aziridination reactions of methyl carbonates of N-arylsulfonyl amino alcohols, the reaction of N-protected methyl carbonates 52 and 53 , which in turn were readily prepared from the known corresponding allylic alcohols $\mathbf{5 0}$ and $\mathbf{5 1},{ }^{21 c}$ with $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ was briefly investigated (Scheme 5). As expected, when either the carbonate 52 or the isomeric carbonate $\mathbf{5 3}$ was treated with $5 \mathrm{~mol} \%$ of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in THF at $60^{\circ} \mathrm{C}$ for 20 min , a separable $94: 6 \sim 95: 5$ mixture of 2,3 -cis-3-isopropyl-2-vinylaziridine $\mathbf{5 4}$ and its 2,3-trans-isomer $\mathbf{5 5}$ was obtained in good yields via a decarboxylative ring closure.
Flash chromatographic separation of the mixture of $\mathbf{5 4}$ and $\mathbf{5 5}$ led to the isolation of the desired 2,3-cis-aziridine $\mathbf{5 4}$ in 85\% yield from the carbonate $\mathbf{5 2}$. The undesired 2,3-trans-aziridine 55 could be recycled for the palladium(0)-catalyzed isomerization reaction with a catalytic amount of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$. The 2,3-cis- and 2,3-trans-stereochemistries were readily established from ${ }^{1} \mathrm{H}$ NMR analysis. The 2,3 -cis-aziridine 54 has a $J_{\mathrm{H}_{23}}$ value $(7.0 \mathrm{~Hz})$ larger than the $J_{\mathrm{H}_{2,3}}$, value $(4.2 \mathrm{~Hz})$ of the $2,3-$ trans-isomer. The data are in good agreement with ${ }^{1} \mathrm{H}$ NMR data for related compounds. ${ }^{21 b, c, 28}$
In a similar manner, palladium(0)-catalyzed reactions of carbonates (22-25 and 33) gave rise to the corresponding 2,3-cis-vinylaziridines (54, 56, 58, $\mathbf{6 0}$ and $\mathbf{6 2}$) preferentially (Scheme 5 and Table 2). The stereoselection of the reaction of the carbonates was at least $94: 6$ favouring the thermodynamically more stable 2,3-cis cyclization products in good agreement with the $a b$ initio calculations reported previously. ${ }^{21 b, c}$

It should be clearly noted that the attempted palladium(0)catalyzed reactions of carbonates such as $\mathbf{5 2}$ at $0^{\circ} \mathrm{C}$ resulted in complete recovery of the unchanged starting substrates. The failed aziridination reaction of the carbonate 52 at $0^{\circ} \mathrm{C}$ must be due to sluggishness in the formation of π-allyl intermediates.

Table 1 Synthesis of allylic methyl carbonates (22-25, 33 and 44-46) and allylic mesylates (26-29, 34 and 47-49)

Entry	Amino alcohol	α, β-Enoate			Allylic alcohol			Carbonate		Mesylate	
		Product	Yield (\%) ${ }^{\text {a }}$	$\% \mathrm{ee}^{\text {b }}$	Product	Yield (\%) ${ }^{\text {c }}$	$\% \mathrm{ee}^{\text {b }}$	Product	Yield (\%) ${ }^{\text {d }}$	Product	Yield (\%) ${ }^{\text {d }}$
1	10	14	78	>98	18	86	>98	22	97	26	98
2	11	15	75	>98	19	87	>98	23	97	27	99
3	12	16	88	>98	20	52	>98	24	93	28	84
4	13	17	63	>98	21	86	>98	25	99	29	79
5	30	31	96	>98	32	88	>98	33	88	34	90
6	35	38	77	>98	41	79	>98	44	90	47	88
7	36	39	59	88	42	93	88	45	98	48	96
8	37	40	85	>98	43	90	>98	46	95	49	99

${ }^{a}$ Isolated yields based on amino alcohol. ${ }^{b}$ Determined by chiral HPLC on a CHIRALCEL OD column (DAICEL; n-hexane-propan-2-ol $=$ $97-83: 3-15) .{ }^{c}$ Isolated yields based on α, β-enoate. ${ }^{d}$ Isolated yields based on allylic alcohol.

Table $2 \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ Catalyzed aziridination of allylic methyl carbonates $\mathbf{2 2 - 2 5}$ and $\mathbf{3 3}{ }^{a}$

Entry	Substrate	${\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}}_{\left(\mathrm{mol}^{\circ}\right)}$	$T /{ }^{\circ} \mathrm{C}$	t / min	cis:trans $^{\boldsymbol{b}}$	${\text { Yield }(\%)^{c}}^{\boldsymbol{c}}$
1	$\mathbf{2 2}$	5	60	20	$\mathbf{5 4 : 5 5}=94: 6$	72
2	$\mathbf{2 3}$	4	65	10	$\mathbf{5 6}: \mathbf{5 7}=94: 6$	66
3	$\mathbf{2 4}$	4	20	360	$\mathbf{5 8 : 5 9}=97: 3$	59
4	$\mathbf{2 5}$	4	55	5	$\mathbf{6 0 : 6 1 = 9 5 : 5}$	50
5	$\mathbf{3 3}$	2	60	5	$\mathbf{6 2 : 6 3 = 9 8 : 2}$	85

${ }^{a}$ All reactions were carried out in THF. ${ }^{b}$ Ratios were determined by reverse-phase HPLC $\left(\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}=85-70: 15-30\right.$ except for entry 2 , $\left.\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}=1: 1\right) .{ }^{c}$ Combined isolated yields.

22, 54, $55 R^{1}=$ Pri$^{1} \cdot R^{2}=M+s$ 23, 56, $57 \mathrm{R}^{1}=\mathrm{Bu}^{\mathrm{i}} ; \mathrm{R}^{2}=\mathrm{Ts}$ 24, 58, $59 \mathrm{R}^{1}=\mathrm{Bu}^{\prime} ; \mathrm{R}^{2}=\mathrm{Pmc}$ 25, 60, $61 R^{1}=B n ; R^{2}=$ Mts

Scheme 5
This was demonstrated by exposing an equimolar mixture of $\mathbf{5 2}$ and 55 to $5 \mathrm{~mol} \%$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in THF at $0^{\circ} \mathrm{C}$ for 1 h . Whereas the carbonate $\mathbf{5 2}$ was completely recovered unchanged, a 95:5 equilibrium mixture of 2,3-cis- and trans-aziridines 54 and 55 was obtained. Thus, the N-activated vinylaziridine $\mathbf{5 5}$ forms π allyl intermediates more easily than the carbonate 52.

It was assumed that the carbonates $\mathbf{4 4} \mathbf{4 6}$ bearing a benzyloxy or a tert-butyldimethylsilyl group (Scheme 4) under similar conditions would provide vinylaziridines. However, this was not

47, 64, $65 R^{1}=$ OTBS; $R^{2}=H ; R^{3}=$ Mts
48, 66, $67 R^{1}=O B n ; R^{2}=H ; R^{3}=M t s$
49, 68, $69 R^{1}=\beta$-OTBS; $R^{2}=\mathrm{Me} ; \mathrm{R}^{3}=\mathrm{Ts}$
Scheme 6
to be the case since all attempts to cyclize the carbonates to vinylaziridines in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ gave an inseparable mixture of products. The difficulty was overcome by treatment of the mesylates with sodium hydride followed by $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ as described below.

Aziridination reaction of the N-protected amino allylic mesylates with sodium hydride followed by equilibrated reaction with a catalytic amount of palladium(0)-catalyst

As shown in Scheme 6 and Table 3, following the Ohfune pro-

Table 3 Base-promoted aziridination of allylic mesylates 26-29, 34 and 47-49 followed by equilibrated reaction with a catalytic amount of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$

Entry	Substrate	t / h	Aziridination reaction ${ }^{\text {a }}$		$\mathrm{Pd}(0)$-Catalyzed equilibrated reaction ${ }^{\text {b }}$		
			cis: trans ${ }^{\text {c }}$	Yield (\%) ${ }^{\text {d }}$	t / h	cis: trans ${ }^{\text {c }}$	Yield (\%) ${ }^{e}$
1	26	0.5	54:55=26:74	66	24	54:55=96:4	99
2	27	1	56:57 $=45: 55$	61	18	56:57 = 96:4	97
3	28	0.5	$\mathbf{5 8}: \mathbf{5 9}=48: 52$	88	18	58:59 = 97:3	95
4	29	0.5	$\mathbf{6 0}: \mathbf{6 1}=43: 57$	70	3	$\mathbf{6 0}: \mathbf{6 1}=95: 5$	82
5	34	0.5	62:63 $=22: 78$	86	18	62:63 = 98:2	95
6	47	4	64:65 = 51:49	62	2	$\mathbf{6 4}: 65=92: 8$	90
7	48	3	66:67 = 51:49	67	0.4	$\mathbf{6 6}: 67=94: 6$	77
8	49	2	68:69 $=8: 92$	58	18	$\mathbf{6 8}: \mathbf{6 9}=92: 8$	92

${ }^{a}$ All the aziridination reactions were carried out in DMF by treatment with NaH (1.5 equiv) at $0{ }^{\circ} \mathrm{C}$ except for entry $8\left(25^{\circ} \mathrm{C}\right) .{ }^{b}$ The equilibrated reactions were carried out in THF at $0^{\circ} \mathrm{C}$ using $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(4 \mathrm{~mol} \%)$. ${ }^{c}$ Ratios were determined by reversed-phase HPLC ($\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}=85-70: 15-$ 30 except for entry $\left.2, \mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}=1: 1\right) .{ }^{d}$ Combined isolated yields based on the corresponding allylic mesylates. ${ }^{e}$ Combined isolated yields based on the base-promoted aziridination products.
cedure, ${ }^{2 a}$ the allylic mesylates (26-29 and 34) were treated with NaH in DMF at $0^{\circ} \mathrm{C}$ to produce a mixture of the corresponding 2,3-cis-vinylaziridines (54, 56, 58, $\mathbf{6 0}$ and $\mathbf{6 2}$) and their 2,3-trans-isomers (55,57,59,61 and 63) in variable ratios in moderate to high yields. Since the desired 2,3-cis-isomers were obtained as the minor products in all cases examined by base-promoted reactions, the mixtures of 2,3-cis- and 2,3-transisomers were treated with $5 \mathrm{~mol} \%$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ to yield the desired 2,3 -cis-vinylaziridines as the major products. ${ }^{21 b, c}$

Typically, a 26:74 mixture of 2,3-cis- and 2,3-trans-2-vinylaziridines 54 and 55 obtained by exposure of the mesylate 26 to sodium hydride was treated with $4 \mathrm{~mol} \%$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in THF to yield a separable equilibrated 96:4 mixture of $\mathbf{5 4}$ and $\mathbf{5 5}$ in 99% combined yield in favour of the 2,3-cis-isomer 54. Following this two-step procedure, the desired 2,3-cis-aziridines (56, 58, 60 and 62) were obtained predominantly starting from the corresponding mesylates (27-29 and 34) in satisfactory yields (Scheme 6 and Table 3).

As stated before, although the carbonates 44-46 bearing a tert-butyldimethylsiloxy or benzyloxy functionality could not be transformed into the corresponding vinylaziridines by treatment with a catalytic amount of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, treatment of the mesylates 47-49 with sodium hydride followed by exposure to a catalytic amount of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ gave the corresponding 2,3-cis-vinylaziridines (64,66 and 68) as the major products in synthetically acceptable yields (Scheme 6 and entries 6-8 in Table 3). Optical purities of all 2 -vinylaziridines synthesized have been determined by HPLC with a chiral stationary phase (Chiralcel OD column; hexane: propan-2-ol = 99.5-99.0:0.5-1.0). Except for aziridines 66 (ee 88%) and 67 (ee 88%) bearing a benzyloxy group, all other 2 -vinylaziridines were found to be essentially optically pure (ee $>98 \%$).

It should be clearly noted that treatment of the allylic mesylates 26 and 34 bearing a branched alkyl group with sodium hydride gave preferentially the corresponding 2,3 -transaziridines 55 and 63 (Scheme 7, entries 1 and 5 in Table 3). Although the ground state and the reactive conformer are not necessarily the same, the ground state conformations of various olefinic molecules containing the alkene moiety play an important role in the stereochemical outcome of π-facial selectivity. ${ }^{29}$ The predominant formation of the 2,3-trans-isomers 55 and $\mathbf{6 3}$ from the corresponding mesylates 26 and $\mathbf{3 4}$ may be rationalized by assuming the preferred conformation \mathbf{B} as shown in Scheme 7. The 2,3-cis- and the 2,3-trans-ratios of the $\mathrm{S}_{\mathrm{N}} \mathbf{2}^{\prime}$ products may reflect the transition state energy difference related to the HA/HB staggered B and HA/HB eclipsed conformers \mathbf{A}. In conformation \mathbf{B}, the allylic 1,3 -strain may be minimized. On the other hand, conformer \mathbf{A}, which could lead to the 2,3 -cis-isomer 54 via the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ pathway, should be disfavoured by steric crowding between the isopropyl or the secbutyl group and the HC hydrogen. Consequently, the reactions

Scheme 7

of the mesylates $\mathbf{2 6}$ and $\mathbf{3 4}$ with a branched alkyl group with sodium hydride yield the corresponding 2,3-trans-vinylaziridines 55 and 63 as the major products most probably via the conformer of type \mathbf{B} (Scheme 7).

Finally, the synthesized 2,3-cis-vinylaziridines could be used for the synthesis of (E)-alkene isosteres (Scheme 8). For

Scheme 8 Reagents: i, O_{3}; ii, (EtO) $)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Bu}^{\mathrm{t}}-(i-\mathrm{Pr})_{2} \mathrm{NEt}-\mathrm{LiCl}$; iii, $i-\operatorname{PrCu}(\mathrm{CN}) \mathrm{MgCl}$.
example, ozonolysis of vinylaziridine $\mathbf{6 2}$ followed by exposure to a mixture of tert-butyl diethylphosphonoacetate, lithium chloride and diisopropylethylamine gave the enoate 70 in 85% yield which, on reaction with $\mathrm{Pr}^{\mathrm{i}} \mathrm{Cu}(\mathrm{CN}) \mathrm{MgCl}$, gave the (E) alkene isostere 71 in 94% yield as a single stereoisomer.

In summary, we have developed a reliable procedure for the
preparation of the synthetically useful 2,3-cis-vinylaziridines from natural α-amino acids. Satisfactory 2,3-cis-selectivities are obtained by exposure of methyl carbonates of various allylic alcohols bearing an N-protected amino group to a catalytic amount of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in aprotic solvents such as THF. Sodium hydride-promoted aziridination of various mesylates of N-protected amino allylic alcohols followed by $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}-$ catalyzed isomerization for the 2,3-cis-selective synthesis of vinylaziridines is also presented. The described methodology involving palladium(0)-catalyzed 2,3-cis-selective aziridination has advantages over other methods in terms of mildness, selectivity and convenience.

Experimental

General methods

The instrumentation has already been described. ${ }^{12 b, c}$ All reactions were carried out under a positive pressure of argon. All glassware and syringes were dried in an electric oven at $100^{\circ} \mathrm{C}$ prior to use. All melting points are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were recorded using a JEOL EX-270 (270 MHz) or Bruker AC-300 $(300 \mathrm{MHz})$ spectrometer in CDCl_{3}. Chemical shifts are reported in parts per million downfield from internal $\mathrm{Me}_{4} \mathrm{Si}$. J Values are given in Hz . For flash chromatography, silica gel 60 H (silica gel for thin-layer chromatography, Merck) or silica gel 60 (finer than 230 mesh, Merck) was employed. For the determination of optical purity, CHIRALCEL OD (Daicel, $4.6 \times 260 \mathrm{~mm}$) was used. For reversed-phase HPLC, μ-Bondasphere-C-18 ($3.9 \times 150 \mathrm{~mm}$, Waters $)$ was employed ($28^{\circ} \mathrm{C}$).

(S)-N-(p-Tolylsulfonyl)leucinol 11

To a stirred mixture of (S)-leucinol ($2.5 \mathrm{~g}, 21.3 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}$ ($5 \mathrm{~cm}^{3}, 36 \mathrm{mmol}$), THF ($5 \mathrm{~cm}^{3}$) and DMF ($20 \mathrm{~cm}^{3}$) was added toluene- p-sulfonyl chloride ($4.87 \mathrm{~g}, 25.6 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 6 h with warming to room temperature followed by quenching with $5 \mathrm{~cm}^{3}$ of 5% aqueous NaHCO_{3}. The whole was extracted with a mixed solvent of $\mathrm{Et}_{2} \mathrm{O}-\mathrm{EtOAc}_{3}$ (3:1). The extract was washed successively with 5% aqueous citric acid, water, 5% aqueous NaHCO_{3}, and water, and dried over MgSO_{4}. Usual work-up gave the title compound $\mathbf{1 1}$ (4.68 $\mathrm{g}, 81 \%$) as colourless crystals, $\mathrm{mp} 102^{\circ} \mathrm{C}$ [from n-hexane$\mathrm{CHCl}_{3}(4: 1)$] (Found: C, 57.3; H, 7.55; N, 4.9. $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}$ requires C, $57.5 ; \mathrm{H}, 7.8 ; \mathrm{N}, 5.2 \%) ;[a]_{\mathrm{D}}^{19}-25.2\left(c 1.03\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.64(3 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{CMe}), 0.78(3 \mathrm{H}, \mathrm{d}$, $J 6.5, \mathrm{CMe}), 1.16-1.33\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{CH}_{2}\right), 1.36-1.54(1 \mathrm{H}, \mathrm{m}$, 4-H), 2.12-2.19 ($1 \mathrm{H}, \mathrm{m}, \mathrm{OH}$), 2.43 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 3.24-3.36 $(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.46(1 \mathrm{H}$, ddd, $J 11.3,4.9$ and $4.9,1-\mathrm{CHH}), 3.57$ $(1 \mathrm{H}$, ddd, $J 11.3,7.0$ and $3.8,1-\mathrm{CH} H), 4.76(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{NH})$, 7.30-7.33 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.70-7.80 (2 H, m, Ph).

(S)- N-(2,2,5,7,8-Pentamethylchroman-6-ylsulfonyl)leucinol 12

To a stirred mixture of (S)-leucinol ($2.34 \mathrm{~g}, 20 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}$ ($5.56 \mathrm{~cm}^{3}, 40 \mathrm{mmol}$), THF ($10 \mathrm{~cm}^{3}$) and EtOAc ($50 \mathrm{~cm}^{3}$) was added 2,2,5,7,8-pentamethylchroman-6-ylsulfonyl chloride (6.2 $\mathrm{g}, 20 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at this temperature for 20 h followed by quenching with 5% aqueous $\mathrm{NaHCO}_{3}\left(10 \mathrm{~cm}^{3}\right)$. The whole was extracted with $\mathrm{Et}_{2} \mathrm{O}-\mathrm{EtOAc}$ ($1: 1$) and the extract was washed successively with 5% aqueous citric acid, brine, 5% aqueous NaHCO_{3}, and brine, and dried over MgSO_{4}. Usual work-up followed by flash chromatography over silica gel with n-hexane-EtOAc $(2: 3)$ gave the title compound $12(5.02 \mathrm{~g}, 66 \%)$ as colourless crystals, $\mathrm{mp} 118^{\circ} \mathrm{C}$ [from n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (1:1)] (Found: C, 62.6; H, 8.6; N, 3.6. $\mathrm{C}_{20} \mathrm{H}_{33^{-}}$ $\mathrm{NO}_{4} \mathrm{~S}$ requires C, 62.6; H, 8.7; N, 3.65\%); $[\alpha]_{\mathrm{D}}^{19}-14.6$ (c 0.997 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.68(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}), 0.76$ (3 $\mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}), 1.19-1.29\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{CH}_{2}\right), 1.32(6 \mathrm{H}, \mathrm{s}, 2 \times$ CMe), $1.40-1.53(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 1.83\left(2 \mathrm{H}, \mathrm{t}, J 7.0,3^{\prime}-\mathrm{CH}_{2}\right)$,
2.09-2.12 ($1 \mathrm{H}, \mathrm{m}, \mathrm{OH}$), 2.13 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 2.57 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), $2.58(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.64\left(1 \mathrm{H}, \mathrm{t}, J 7.0,4^{\prime}-\mathrm{CH}_{2}\right), 3.25-3.35(1 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{H}), 3.40-3.48(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{CHH}), 3.57-3.65(1 \mathrm{H}, \mathrm{m}$, $3-\mathrm{CH} H), 4.59(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{NH})$.

(S)- N-(2,4,6-Trimethylphenylsulfonyl)phenylalaninol 13

To a stirred solution of (S)-phenylalaninol ($6.05 \mathrm{~g}, 40 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}\left(8.3 \mathrm{~cm}^{3}, 60 \mathrm{mmol}\right)$ in a mixed solvent of DMF (10 cm^{3}) and $\mathrm{CHCl}_{3}\left(20 \mathrm{~cm}^{3}\right)$ was added mesitylenesulfonyl chloride ($10.5 \mathrm{~g}, 48 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}\left(10 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at this temperature for 48 h followed by quenching with 5% aqueous $\mathrm{NaHCO}_{3}\left(10 \mathrm{~cm}^{3}\right)$. The whole was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the extract was washed successively with 5% aqueous citric acid, $\mathrm{H}_{2} \mathrm{O}, 5 \%$ aqueous NaHCO_{3}, and $\mathrm{H}_{2} \mathrm{O}$, and dried over MgSO_{4}. Usual work-up followed by flash chromatography over silica gel with n-hexane-EtOAc (2:1) gave the title compound $13(12.3 \mathrm{~g}, 92 \%)$ as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}, \quad 334.1470 . \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}$ requires $M+\mathrm{H}$, 334.1477]; $[a]_{\mathrm{D}}^{27}-29.4\left(c 1.19\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $1.90(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.29(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.51(6 \mathrm{H}, \mathrm{s}, 2 \times$ CMe), $2.72(1 \mathrm{H}, \mathrm{dd}, J 13.8$ and $7.0,3-\mathrm{CHH}), 2.79(1 \mathrm{H}, \mathrm{dd}$, $J 13.8$ and $6.8,3-\mathrm{CH} H), 3.36-3.47(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.52(1 \mathrm{H}, \mathrm{dd}$, $J 11.1$ and $4.3,1-\mathrm{CHH}), 3.65(1 \mathrm{H}, \mathrm{dd}, J 11.1$ and $4.1,1-\mathrm{CHH})$, $4.91(1 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{NH}), 6.88(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 6.94-7.00(2 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 7.14-7.20(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z$ (FAB-LRMS) $334\left(\mathrm{MH}^{+}\right.$, base peak), $302,242,183,152,134,119,91,60$.

General procedure for preparation of γ - N-arylsulfonylamino- α, β unsaturated esters 14-17, 31 and 38-40: methyl (4S,2E)-5-methyl-4-[N-(2,4,6-trimethylphenylsulfonyl)amino]hex-2-enoate 14
To a stirred solution of oxalyl chloride ($2.5 \mathrm{~cm}^{3}, 26 \mathrm{mmol}$) in a mixed solvent of $\mathrm{CHCl}_{3}\left(30 \mathrm{~cm}^{3}\right)$ and n-hexane $\left(30 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$ under argon was added dropwise a solution of DMSO ($5.67 \mathrm{~cm}^{3}, 80 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}\left(10 \mathrm{~cm}^{3}\right)$. After 30 min , a solution of (S)-N-(2,4,6-trimethylphenylsulfonyl)valinol $\mathbf{1 0}^{21 c}(5.7 \mathrm{~g}, 20$ $\mathrm{mmol})$ in $\mathrm{CHCl}_{3}\left(10 \mathrm{~cm}^{3}\right)$ was added to the above reagent at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min . Diisopropylethylamine ($20.9 \mathrm{~cm}^{3}, 120 \mathrm{mmol}$) was added to the above solution at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 30 min with warming to $0{ }^{\circ} \mathrm{C}$. A saturated $\mathrm{NH}_{4} \mathrm{Cl}\left(10 \mathrm{~cm}^{3}\right)$ solution was added to the mixture and the whole was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed successively with 5% aqueous citric acid and water, and dried over MgSO_{4}. The extract was concentrated under reduced pressure to an oil, which was dissolved in $\mathrm{CHCl}_{3}\left(50 \mathrm{~cm}^{3}\right)$. (Methoxycarbonylmethylene)triphenylphosphorane ($6.68 \mathrm{~g}, 20 \mathrm{mmol}$) was added to the above solution at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h with warming to room temperature. Concentration under reduced pressure gave an oily residue, which was flash chromatographed on silica gel with n-hexane-EtOAc (3:1) to give the title compound 14 (5.3 g , 78%) as colourless needles, 98% ee (S) by HPLC [Daicel Chiralcel OD, n-hexane-propan-2-ol $=95: 5\left(0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right)$, (S) isomer $34.7 \mathrm{~min},(R)$-isomer 29.9 min], $\mathrm{mp} 97^{\circ} \mathrm{C}\left(\right.$ from $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ (Found: C, 59.9; H, 7.4; N, 4.0. $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}$ requires C, 60.15; $\mathrm{H}, 7.4 ; \mathrm{N}, 4.1 \%) ;[a]_{\mathrm{D}}^{20}-60.9\left(c 0.70\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.82(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}), 0.90(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe})$, $1.72-1.89(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.28(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.62(6 \mathrm{H}, \mathrm{s}$, $2 \times \mathrm{CMe}$), $3.64-3.68(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.66(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.72$ $(1 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{NH}), 5.61(1 \mathrm{H}, \mathrm{dd}, J 15.4$ and 1.1, 2-H), 6.54 (1 $\mathrm{H}, \mathrm{dd}, J 15.4$ and $7.3,3-\mathrm{H}), 6.92(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$.

Methyl (4S,2E)-6-methyl-4-[N-(p-tolylsulfonyl)amino]hept-2enoate 15. By a procedure identical with that described for the preparation of the enoate $\mathbf{1 4}$ from $\mathbf{1 0}$, the alcohol $\mathbf{1 1}(4.68 \mathrm{~g}$, $17.3 \mathrm{mmol})$ was converted into the title compound $\mathbf{1 5}(4.21 \mathrm{~g}$, $75 \%), \mathrm{mp} 76^{\circ} \mathrm{C}$ [colourless crystals from n-hexane- $\mathrm{Et}_{2} \mathrm{O}(1: 1)$] (Found: C, 58.9; H, 7.2; N, 4.1. $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}$ requires C, 59.05; $\mathrm{H}, 7.1 ; \mathrm{N}, 4.3 \%) ;[a]_{\mathrm{D}}^{20}-51.3\left(c 0.834\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) 0.78(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}), 0.83(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe})$, $1.30-1.36\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}_{2}\right), 1.53-1.62(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.41(3 \mathrm{H}$, s , CMe), 3.68 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.90-4.01(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.78(1 \mathrm{H}$, d, $J 7.8, \mathrm{NH}), 5.73(1 \mathrm{H}, \mathrm{dd}, J 15.4$ and $1.4,2-\mathrm{H}), 6.56(1 \mathrm{H}$, dd, $J 15.4$ and $6.8,3-\mathrm{H}), 7.26-7.30(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.69-7.74(2 \mathrm{H}, \mathrm{m}$, Ph).

Methyl (4S,2E)-6-methyl-4-[N-(2,2,5,7,8-pentamethyl-chroman-6-ylsulfonyl)amino]hept-2-enoate 16. By a procedure identical with that described for the preparation of the enoate 14 from 10, the alcohol $12(4.78 \mathrm{~g}, 12.5 \mathrm{mmol})$ was converted into the title compound $16(4.77 \mathrm{~g}, 88 \%)$ as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}, 438.2290 . \mathrm{C}_{23} \mathrm{H}_{36} \mathrm{NO}_{5} \mathrm{~S}$ requires $M+\mathrm{H}, 438.2314]$; $[a]_{\mathrm{D}}^{21}-28.2$ ($c 1.64$ in CHCl_{3}); $\delta_{\mathrm{H}}(270 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.81(3 \mathrm{H}, \mathrm{d}, J 5.9, \mathrm{CMe}), 0.83(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe})$, $1.24-1.46\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}_{2}\right), 1.31(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 1.52-1.67$ $(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 1.82\left(2 \mathrm{H}, \mathrm{t}, J 7.0,3^{\prime}-\mathrm{CH}_{2}\right), 2.10(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, $2.52(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.54(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, $2.63(2 \mathrm{H}, \mathrm{t}, J 7.0$, $4^{\prime}-\mathrm{CH}_{2}$), $3.64(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.84-3.95(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.44(1 \mathrm{H}$, d, $J 7.8, \mathrm{NH}), 5.59(1 \mathrm{H}$, dd, $J 15.7$ and $1.1,2-\mathrm{H}), 6.43(1 \mathrm{H}, \mathrm{dd}$, $J 15.7$ and $7.8,3-\mathrm{H})$; m / z (FAB-LRMS) $438\left(\mathrm{MH}^{+}\right)$, 437, 267 (base peak), 219, 203, 170, 147.

Methyl (4S,2E)-5-phenyl-4-[N-(2,4,6-trimethylphenylsulfony) aminolpent-2-enoate 17 and its ($4 S, 2 Z$)-isomer. By a procedure identical with that described for the preparation of the enoate $\mathbf{1 4}$ from 10, the alcohol $13(4.0 \mathrm{~g}, 12.0 \mathrm{mmol})$ was converted into the title compound $\mathbf{1 7}(2.92 \mathrm{~g}, 63 \%)$ and its (Z)isomer ($190 \mathrm{mg}, 4 \%$). Compound 17: mp $132{ }^{\circ} \mathrm{C}$ [colourless crystals from n-hexane- $\mathrm{Et}_{2} \mathrm{O}(1: 3)$] (Found: C, $65.0 ; \mathrm{H}, 6.5 ; \mathrm{N}$, 3.4. $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 65.1 ; \mathrm{H}, 6.5 ; \mathrm{N}, 3.6 \%$); $[a]_{\mathrm{D}}^{27}-60.9$ (c 1.14 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.28(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.46$ $(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 2.79(1 \mathrm{H}, \mathrm{dd}, J 13.8$ and $7.3,5-\mathrm{CHH}), 2.86$ ($1 \mathrm{H}, \mathrm{dd}, J 13.8$ and $6.2,5-\mathrm{CH} H$), 3.68 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.03-4.14 $(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.60(1 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{NH}), 5.77(1 \mathrm{H}, \mathrm{dd}, J 15.9$ and $1.4,2-\mathrm{H}), 6.71(1 \mathrm{H}, \mathrm{dd}, J 15.9$ and $6.2,3-\mathrm{H}), 6.87(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$, 6.98-7.05 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.20-7.28 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$). (Z)-Isomer of 17: mp $154^{\circ} \mathrm{C}$ [colourless crystals from n-hexane- $\mathrm{CHCl}_{3}(5: 1)$] (Found: C, $64.85 ; \mathrm{H}, 6.5 ; \mathrm{N}, 3.6 . \mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}$ requires C, 65.1 ; $\mathrm{H}, 6.5 ; \mathrm{N}, 3.6 \%$); $[a]_{\mathrm{D}}^{27}-42.7$ (c 0.942 in $\left.\mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}(270 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 2.26(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 2.28(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.60(1 \mathrm{H}$, dd, $J 14.0$ and $9.7,5-\mathrm{CHH}), 2.98(1 \mathrm{H}$, dd, $J 14.0$ and 4.3, 5-CHH), $3.70(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.74(1 \mathrm{H}, \mathrm{d}, J 4.6, \mathrm{NH}), 4.87-4.97$ $(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 5.79(1 \mathrm{H}, \mathrm{dd}, J 11.3$ and $1.4,2-\mathrm{H}), 6.29(1 \mathrm{H}, \mathrm{dd}$, $J 11.3$ and $8.1,3-\mathrm{H}), 6.81(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 7.01-7.07(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 7.16-7.23 (3 H, m, Ph).

General procedure for preparation of allylic alcohols 18-21 and 32 and 41-43: (4S,2E)-5-methyl-4-[N-(2,4,6-trimethylphenyl-sulfonyl)amino]hex-2-en-1-ol 18

DIBAL ($1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in toluene; $76.1 \mathrm{~cm}^{3}, 76.1$ mmol) was added dropwise to a stirred solution of the enoate $14(5.2 \mathrm{~g}, 34.6 \mathrm{mmol})$ in a mixed solvent of toluene $\left(80 \mathrm{~cm}^{3}\right)$ and $\mathrm{CHCl}_{3}\left(30 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ under argon. After 1 h , a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution ($30 \mathrm{~cm}^{3}$) was added with vigorous stirring. The mixture was made acidic with saturated aqueous citric acid and extracted with EtOAc. The extract was washed with water and dried over MgSO_{4}. The usual work-up followed by recrystallization from $\mathrm{Et}_{2} \mathrm{O}$ gave the title compound $18(4.11 \mathrm{~g}, 86 \%)$ as colourless crystals, 98% ee (S) by HPLC [Daicel Chiralcel OD, n-hexane-propan-2-ol $=95: 5\left(0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right),(S)$-isomer 46.4 $\min ,(R)$-isomer 42.0 min]; mp $122^{\circ} \mathrm{C}$ (Found: C, 61.6; H, 8.15; $\mathrm{N}, 4.3 . \mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}$ requires $\left.\mathrm{C}, 61.7 ; \mathrm{H}, 8.1 ; \mathrm{N}, 4.5\right) ;[a]_{\mathrm{D}}^{20}-22.8$ (c 2.60 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.80(3 \mathrm{H}, \mathrm{d}, J 6.8$, CMe), 0.87 ($3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}$), $1.35(1 \mathrm{H}, \mathrm{dd}, J 5.1$ and 5.1 , $\mathrm{OH}), 1.62-1.80(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.63(6 \mathrm{H}, \mathrm{s}$, $2 \times \mathrm{CMe}$), $3.54(1 \mathrm{H}$, ddd, $J 7.8,7.6$ and $4.6,4-\mathrm{H}$), $3.85(1 \mathrm{H}, \mathrm{d}$, $J 5.1,1-\mathrm{CHH}), 3.87(1 \mathrm{H}, \mathrm{d}, J 5.1,1-\mathrm{CH} H), 4.84(1 \mathrm{H}, \mathrm{d}, J 7.8$, NH), $5.32(1 \mathrm{H}$, dddd, $J 15.4,7.8,1.4$ and $1.4,3-\mathrm{H}), 5.48(1 \mathrm{H}$, dddd, J 15.4, 4.6, 4.6 and $0.7,2-\mathrm{H}), 6.94(2 \mathrm{H}, \mathrm{s})$.
(4S,2E)-6-Methyl-4-[N-(p-tolylsulfonyl)amino]hept-2-en-1-ol 19. By a procedure identical with that described for the preparation of the alcohol 18 from 14, the enoate $15(4.4 \mathrm{~g}, 13.5$ mmol) was converted into the title compound $19(3.5 \mathrm{~g}, 87 \%)$, $\mathrm{mp} 104^{\circ} \mathrm{C}$ [colourless crystals from $\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}$ (1:2)] (Found: C, $60.4 ; \mathrm{H}, 7.9 ; \mathrm{N}, 4.8 . \mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}$ requires $\mathrm{C}, 60.6 ; \mathrm{H}$, $7.8 ; \mathrm{N}, 4.7 \%$); $[a]_{\mathrm{D}}^{20}-20.4$ (c 2.45 in CHCl_{3}); $\delta_{\mathrm{H}}(270 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.76(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}), 0.80(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe})$, $1.25(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and $7.3,5-\mathrm{CHH}), 1.33(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and 7.6, 5-CHH $), 1.48-1.67(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 1.85(1 \mathrm{H}, \mathrm{t}, J 5.9, \mathrm{OH})$, $2.42(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.77$ (1 H , dddd, $J 7.8,7.6,7.3$ and $7.3,4-\mathrm{H}$), 3.89-3.93 ($2 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2}$), $5.12(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{NH}), 5.37(1 \mathrm{H}$, ddd, $J 15.7,7.3$ and $1.4,3-\mathrm{H}), 5.55(1 \mathrm{H}$, ddd, $J 15.7,5.1$ and 5.1, 2-H), 7.27-7.30 (2 H, m, Ph), 7.73-7.76 (2 H, m, Ph).
(4S,2E)-6-Methyl-4-[N-(2,2,5,7,8-pentamethylchroman-6-yl-sulfonyl)amino]hept-2-en-1-ol 20. By a procedure similar to that described for the preparation of the alcohol 18 from 14, the enoate $16(4.59 \mathrm{~g}, 10.5 \mathrm{mmol})$ was converted into the title compound $20(2.31 \mathrm{~g}, 52 \%), \mathrm{mp} 113{ }^{\circ} \mathrm{C}$ [colourless crystals from n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (1:1)] (Found: C, 64.3; H, 8.6; N, 3.3. $\mathrm{C}_{22} \mathrm{H}_{35^{-}}$ NO_{4} S requires C, $64.5 ; \mathrm{H}, 8.6 ; \mathrm{N}, 3.4 \%$); $[a]_{\mathrm{D}}^{19}-8.61$ (c 1.05 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.80(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}), 0.81$ ($3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}$), 1.05-1.15 ($1 \mathrm{H}, \mathrm{m}, \mathrm{OH}$), 1.18-1.31 (1 H , $\mathrm{m}, 5-\mathrm{CH} \mathrm{H}), 1.32(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 1.32-1.41(1 \mathrm{H}, \mathrm{m}$, 5-CHH), 1.49-1.63 ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), $1.83\left(2 \mathrm{H}, \mathrm{t}, J 6.8,3^{\prime}-\mathrm{CH}_{2}\right)$, $2.13(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.54(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.55(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.65$ $\left(2 \mathrm{H}, \mathrm{t}, J 6.8,4^{\prime}-\mathrm{CH}_{2}\right), 3.74-3.87\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}\right.$ and $\left.1-\mathrm{CH}_{2}\right)$, 4.42-4.46 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NH}$), $5.26(1 \mathrm{H}$, dddd, J 15.7, 7.6, 1.1 and $1.1,3-\mathrm{H}), 5.52(1 \mathrm{H}$, dddd, $J 15.7,5.4,5.4$ and $0.5,2-\mathrm{H})$.
(4S,2E)-5-Phenyl-4-[N-(2,4,6-trimethylphenylsulfonyl)-
amino]pent-2-en-1-ol 21. By a procedure identical with that described for the preparation of the alcohol 18 from 14, the enoate $\mathbf{1 7}(2.7 \mathrm{~g}, 6.97 \mathrm{mmol})$ was converted into the title compound $21(2.16 \mathrm{~g}, 86 \%), \mathrm{mp} 99-100^{\circ} \mathrm{C}$ [colourless needles from n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (2:1)] (Found: C, 66.6; H, 6.95; N, 3.6. $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}$ requires C, 66.8; $\mathrm{H}, 7.0 ; \mathrm{N}, 3.9 \%$); $[a]_{\mathrm{D}}^{19}-27.5$ (c 0.75 in CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.27(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, $2.29(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.48(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 2.75(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and $7.6,5-\mathrm{CHH}), 2.81(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and $6.8,5-\mathrm{CH} H), 3.88-$ $3.95\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2}\right), 3.92-4.02(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.62-4.65(1 \mathrm{H}$, $\mathrm{m}, \mathrm{NH}), 5.46(1 \mathrm{H}, \mathrm{dd}, J 15.7$ and $7.0,3-\mathrm{H}), 5.58(1 \mathrm{H}$, ddd, J 15.7, 4.9 and 4.9, 2-H), $6.88(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 7.02-7.05(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 7.17-7.29 (3 H, m, Ph).

General procedure for preparation of methyl carbonates 22-25, 33 and 44-46: (4S,2E)-O-methoxycarbonyl-5-methyl-4-[N -(2,4,6-trimethylphenylsulfony) amino]hex-2-en-1-ol 22

To a stirred mixture of the alcohol $18(2.06 \mathrm{~g}, 6.62 \mathrm{mmol})$, pyridine $\left(5 \mathrm{~cm}^{3}\right)$ and $\mathrm{CHCl}_{3}\left(3 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ was added dropwise methyl chloroformate ($1.03 \mathrm{~cm}^{3}, 13.2 \mathrm{mmol}$), and the mixture was stirred with warming to $0^{\circ} \mathrm{C}$. After $1 \mathrm{~h}, 5 \% \mathrm{NaHCO}_{3}$ $\left(10 \mathrm{~cm}^{3}\right)$ was added to the mixture with vigorous stirring. The whole was extracted with a mixed solvent of $\mathrm{Et}_{2} \mathrm{O}-\mathrm{EtOAc}$ (3:1), and the extract was washed successively with 5% aqueous citric acid, $\mathrm{H}_{2} \mathrm{O}, 5 \%$ aqueous NaHCO_{3}, and $\mathrm{H}_{2} \mathrm{O}$, and dried over MgSO_{4}. Usual work-up followed by flash chromatography over silica gel with n-hexane-EtOAc (3:1) gave the title compound $22(2.37 \mathrm{~g}, 97 \%)$ as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}, 370.1672 . \mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{~S}$ requires $\left.M+\mathrm{H}, 370.1688\right]$; $[a]_{\mathrm{D}}^{20}-10.4\left(c 2.72\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.81(3 \mathrm{H}, \mathrm{d}$, $J 7.0, \mathrm{CMe}), 0.88(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}), 1.68-1.80(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, $2.29(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.61(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 3.49-3.57(1 \mathrm{H}, \mathrm{m}$, 4-H), 3.77 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $4.28-4.34\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2}\right), 4.63(1 \mathrm{H}$, d, $J 7.8, \mathrm{NH}), 5.35(1 \mathrm{H}, \mathrm{dd}, J 15.7$ and $4.9, \mathrm{CH}=\mathrm{CH}), 5.39(1 \mathrm{H}$, dd, $J 15.7$ and 6.2, $\mathrm{CH}=\mathrm{C} H), 6.92(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$; $m / z(\mathrm{FAB}-$ LRMS) $370\left(\mathrm{MH}^{+}\right), 368,326,294,183,171,119$ (base peak), 95.
(4S,2E)-O-Methoxycarbonyl-6-methyl-4-[N-(\boldsymbol{p}-tolylsulfonyl)-aminolhept-2-en-1-ol 23. By a procedure identical with that described for the preparation of the carbonate 22 from 18, the alcohol $19(1.55 \mathrm{~g}, 5.2 \mathrm{mmol})$ was converted into the title compound 23 ($1.80 \mathrm{~g}, 97 \%$), $\mathrm{mp} 45^{\circ} \mathrm{C}$ [colourless crystals from n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (4:1)] (Found: C, 57.2; H, 7.0; N, 3.7. $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}$ requires C, 57.4; H, 7.1; N, 3.9\%); [a] ${ }_{\mathrm{D}}^{20}-5.4$ (c 2.07 in $\left.\mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.79(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CMe}), 0.82$ $(3 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{CMe}), 1.26(1 \mathrm{H}$, ddd, $J 13.5,7.0$ and 7.0 , $5-\mathrm{CHH}), 1.34(1 \mathrm{H}$, ddd, $J 13.5,7.0$ and $7.0,5-\mathrm{CH} H), 1.53-$ $1.68(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.42(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.77$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.82 $(1 \mathrm{H}$, dddd, $J 7.8,7.0,7.0$ and $6.2,4-\mathrm{H})$, $4.34-4.41(2 \mathrm{H}, \mathrm{m}$, $\left.1-\mathrm{CH}_{2}\right), 4.81(1 \mathrm{H}, \mathrm{dd}, J 7.8$ and $4.3, \mathrm{NH}), 5.42(1 \mathrm{H}, \mathrm{dd}, J 15.9$ and $6.2,3-\mathrm{H}), 5.48$ (1 H , ddd, $J 15.9,5.4$ and $5.4,2-\mathrm{H}$), $7.26-$ $7.29(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.71-7.74(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.
(4S,2E)-O-Methoxycarbonyl-6-methyl-4-[N-(2,2,5,7,8-penta-methylchroman-6-ylsulfonyl)amino]hept-2-en-1-ol 24. By a procedure identical with that described for the preparation of the carbonate 22 from 18, the alcohol $20(2.11 \mathrm{~g}, 5 \mathrm{mmol})$ was converted into the title compound $24(2.23 \mathrm{mg}, 93 \%), \mathrm{mp} 54^{\circ} \mathrm{C}$ [colourless crystals from n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (2:1)] (Found: C, 61.5 ; $\mathrm{H}, 8.0 ; \mathrm{N}, 2.9 . \mathrm{C}_{24} \mathrm{H}_{37} \mathrm{NO}_{6} \mathrm{~S}$ requires C, 61.6; H, 8.0; N, 3.0\%); $[a]_{\mathrm{D}}^{18}-10.3\left(c 1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.79(3 \mathrm{H}, \mathrm{d}$, $J 6.5, \mathrm{CMe}), 0.81(3 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{CMe}), 1.26(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and $7.3,5-\mathrm{CHH}), 1.32(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 1.36(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and 7.3, 5-CHH), 1.49-1.62 ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), $1.83(2 \mathrm{H}, \mathrm{t}, J 6.8$, $3^{\prime}-\mathrm{CH}_{2}$), $2.12(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.52(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.54(3 \mathrm{H}, \mathrm{s}$, CMe), $2.65\left(2 \mathrm{H}, \mathrm{t}, J 6.8,4^{\prime}-\mathrm{CH}_{2}\right), 3.73-3.84(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.77$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.25-4.37\left(3 \mathrm{H}, \mathrm{m}, \mathrm{NH}\right.$ and $\left.1-\mathrm{CH}_{2}\right), 5.38(1 \mathrm{H}$, dd, $J 15.9$ and $6.2,3-\mathrm{H}), 5.45(1 \mathrm{H}$, ddd, $J 15.9,5.4$ and 5.4 , $2-H)$.
(4S,2E)-O-Methoxycarbonyl-5-phenyl-4-[N-(2,4,6-trimethyl-phenylsulfonyl)amino]pent-2-en-1-ol 25. By a procedure identical with that described for the preparation of the carbonate 22 from 18, the alcohol $21(290 \mathrm{mg}, 0.81 \mathrm{mmol})$ was converted into the title compound 25 ($335 \mathrm{mg}, 99 \%$) as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 418.1683. $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{~S}$ requires $M+\mathrm{H}$, 418.1688]; $[a]_{\mathrm{D}}^{22}-20.9\left(c 0.766\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $2.28(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.47(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe})$, $2.76(1 \mathrm{H}, \mathrm{dd}, J 13.8$ and 7.3, $5-\mathrm{CHH}), 2.81(1 \mathrm{H}, \mathrm{dd}, J 13.8$ and $6.2,5-\mathrm{CH} H), 3.78$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.91-4.00 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 4.38 ($1 \mathrm{H}, \mathrm{d}, J 14.3$, $1-\mathrm{CHH}), 4.40(1 \mathrm{H}, \mathrm{d}, J 14.3,1-\mathrm{CH} H), 4.50(1 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{NH})$, $5.51(1 \mathrm{H}$, ddd, $J 15.4,4.9$ and $4.9,2-\mathrm{H}), 5.53(1 \mathrm{H}, \mathrm{dd}, J 15.4$ and 5.7, 3-H), $6.87(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 7.01-7.07(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.17-$ 7.28 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m / z (FAB-LRMS) $418\left(\mathrm{MH}^{+}\right), 342,326,219$, 183, 143, 119 (base peak), 91.

General procedure for preparation of allylic methanesulfonates 26-29, 34 and 47-49: (4S,2E)-1-methylsulfonyloxy-5-methyl-4-[(2,4,6-trimethylphenylsulfonyl)amino]hex-2-ene 26

To a stirred mixture of the alcohol $\mathbf{1 8}(100 \mathrm{mg}, 0.334 \mathrm{mmol})$, $\mathrm{Et}_{3} \mathrm{~N}\left(0.46 \mathrm{~cm}^{3}, 3.34 \mathrm{mmol}\right)$, and THF $\left(5 \mathrm{~cm}^{3}\right)$ was added dropwise methanesulfonyl chloride $\left(0.13 \mathrm{~cm}^{3}, 1.67 \mathrm{mmol}\right)$ at $0^{\circ} \mathrm{C}$. The stirring was continued for 0.5 h at $0^{\circ} \mathrm{C}$ followed by quenching with $1 \mathrm{~cm}^{3}$ of saturated aqueous NaHCO_{3} with vigorous stirring. The whole was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the extract was washed successively with 5% aqueous citric acid, water, 5% aqueous NaHCO_{3}, and water, and dried over MgSO_{4}. Usual work-up followed by flash chromatography over silica gel with n-hexane-EtOAc (2:1) gave the title compound 26 (127 mg , 98%), mp $56^{\circ} \mathrm{C}$ [colourless crystals from n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (1:10)] (Found: C, $52.45 ; \mathrm{H}, 7.15 ; \mathrm{N}, 3.4 . \mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S}_{2}$ requires C, $52.4 ; \mathrm{H}, 7.0 ; \mathrm{N}, 3.6 \%) ;[a]_{\mathrm{D}}^{31}-31.4\left(c 0.63\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.80(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}), 0.86(3 \mathrm{H}, \mathrm{d}, J 7.0$, $\mathrm{CMe}), 1.68-1.80(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.62(6 \mathrm{H}, \mathrm{s}$, $2 \times \mathrm{CMe}), 2.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{Me}\right), 3.57(1 \mathrm{H}$, ddd, $J 7.8,6.5$ and $5.7,4-\mathrm{H}), 4.45-4.47\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2}\right), 4.59(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{NH})$,
5.49 (1 H , ddd, J 15.7, 5.7 and $5.7,2-\mathrm{H}$), $5.55(1 \mathrm{H}, \mathrm{dd}, J 15.7$ and $6.5,3-\mathrm{H}), 6.94(2 \mathrm{H}, \mathrm{s})$.
(4S,2E)-O-Methylsulfonyloxy-6-methyl-4-[N -(p-tolylsulf-onyl)amino]hept-2-en-1-ol 27. By a procedure similar to that described for the preparation of the mesylate 26 from 18, the alcohol 19 ($100 \mathrm{mg}, 0.336 \mathrm{mmol}$) was converted into the title compound $27(125 \mathrm{mg}, 99 \%)$ as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 376.1236. $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO}_{5} \mathrm{~S}_{2}$ requires $\left.M+\mathrm{H}, 376.1252\right]$; $[a]_{\mathrm{D}}^{28}-24.7\left(c 0.825\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.76(3 \mathrm{H}$, d, $J 6.5, \mathrm{CMe}), 0.82(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}), 1.23-1.35(2 \mathrm{H}, \mathrm{m}$, 5-CH2), 1.55-1.65 ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), $2.43(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.99(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{SO}_{2} \mathrm{Me}\right), 3.80-3.90(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.31(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{NH})$, 4.52-4.54 ($2 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2}$), $5.52-5.60(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 5.62(1 \mathrm{H}$, dd, $J 15.4$ and $5.1,3-\mathrm{H}), 7.28-7.32(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.68-7.74(2 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}) ; m / z$ (FAB-LRMS) $376\left(\mathrm{MH}^{+}\right), 374,280$ (base peak), 240, 155, 139, 109, 91.
(4S,2E)-O-Methylsulfonyl-6-methyl-4-[N-(2,2,5,7,8-penta-methylchroman-6-ylsulfonyl)amino]hept-2-en-1-ol 28. By a procedure similar to that described for the preparation of the mesylate 26 from 18, the alcohol $20(90 \mathrm{mg}, 0.22 \mathrm{mmol})$ was converted into the title compound $28(90 \mathrm{mg}, 84 \%)$ as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 487.2070. $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{NO}_{6} \mathrm{~S}_{2}$ requires $M+\mathrm{H}, 487.2062]$; $[a]_{\mathrm{D}}^{24}-25.0\left(c 1.17\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.76(3 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{CMe}), 0.81(3 \mathrm{H}, \mathrm{d}, J 6.8$, CMe), 1.18-1.43 ($2 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}_{2}$), $1.32(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 1.47-$ $1.61(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 1.84\left(2 \mathrm{H}, \mathrm{t}, J 7.0,3^{\prime}-\mathrm{CH}_{2}\right), 2.13(3 \mathrm{H}, \mathrm{s}$, CMe), $2.53(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.54(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.65(2 \mathrm{H}, \mathrm{t}, J 7.0$, $4^{\prime}-\mathrm{CH}_{2}$), $2.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{Me}\right), 3.75-3.87(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.41$ $(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{NH}), 4.43-4.53\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2}\right), 5.55(1 \mathrm{H}, \mathrm{dd}$, $J 15.6$ and $2.1,3-\mathrm{H})$, $5.57(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$; m / z (FAB-LRMS) 487 $\left(\mathrm{MH}^{+}\right), 392,267,251,203$ (base peak), 202, 147, 109.
(4S,2E)-O-Methylsulfonyl-5-phenyl-4-[N -(2,4,6-trimethyl-phenylsulfonyl)aminolpent-2-en-1-ol 29. By a procedure similar to that described for the preparation of the mesylate 26 from 18, the alcohol $21(100 \mathrm{mg}, 0.278 \mathrm{mmol})$ was converted into the title compound 29 ($96 \mathrm{mg}, 79 \%$), $\mathrm{mp} 99-100^{\circ} \mathrm{C}$ [colourless crystals from $\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}$ (1:10)] (Found: C, 57.4; H, 6.2; N, 3.3. $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S}_{2}$ requires $\left.\mathrm{C}, 57.6 ; \mathrm{H}, 6.2 ; \mathrm{N}, 3.2 \%\right) ;[a]_{\mathrm{D}}^{32}-34.2$ (c 1.38 in CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.29(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.46$ $(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 2.74(1 \mathrm{H}, \mathrm{dd}, J 13.8$ and $7.6,5-\mathrm{CHH}), 2.81$ $(1 \mathrm{H}, \mathrm{dd}, J 13.8$ and $6.2,5-\mathrm{CH} H), 2.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{Me}\right), 3.92-$ $4.02(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.51-4.54\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2}\right), 4.59(1 \mathrm{H}, \mathrm{d}$, $J 6.5, \mathrm{NH}), 5.61(1 \mathrm{H}$, ddd, $J 15.4,5.1$ and $5.1,2-\mathrm{H}), 5.70(1 \mathrm{H}$, $\mathrm{dd}, J 15.4$ and $6.2,3-\mathrm{H}), 6.88(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 6.97-7.03(2 \mathrm{H}, \mathrm{m}$, Ph), 7.19-7.24 (3 H, m, Ph).
(2S,3S)-2-[N-(4-Methoxy-2,3,6-trimethylphenylsulfonyl)-amino]-4-methylpentan-1-ol 30. To a stirred solution of (S)isoleucinol ($10 \mathrm{~g}, 85.3 \mathrm{mmol}$) in a mixed solvent of $\mathrm{CHCl}_{3}(20$ $\left.\mathrm{cm}^{3}\right)$ and DMF $\left(10 \mathrm{~cm}^{3}\right)$ were added $\mathrm{Et}_{3} \mathrm{~N}\left(24.8 \mathrm{~cm}^{3}, 179 \mathrm{mmol}\right)$ and 4-methoxy-2,3,6-trimethylphenylsulfonyl chloride (22.3 g , 89.6 mmol) at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 6 h at this temperature followed by quenching with $5 \mathrm{~cm}^{3}$ of 5% aqueous NaHCO_{3}. The whole was extracted with $\mathrm{Et}_{2} \mathrm{O}-\mathrm{EtOAc}(1: 1)$, and the extract was washed successively with 5% aqueous citric acid, water, 5% aqueous NaHCO_{3}, and water, and dried over MgSO_{4}. Concentration under reduced pressure gave an oily residue, which was filtered through a short pad of silica gel. The filtrate was concentrated under reduced pressure to leave a crystalline mass. Recrystallization from n-hexane-EtOAc (3:2) gave the title compound $\mathbf{3 0}(22.5 \mathrm{~g}, 80 \%)$ as colourless crystals. mp $63{ }^{\circ} \mathrm{C}$ (Found: C, 58.4; H, 8.2; N, 4.3. $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 58.3 ; \mathrm{H}, 8.3 ; \mathrm{N}, 4.25 \%)$; $[a]_{\mathrm{D}}^{25}-17.1\left(c 1.51\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}(270$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $0.76(3 \mathrm{H}, \mathrm{t}, J 7.8, \mathrm{CMe}), 0.77(3 \mathrm{H}, \mathrm{d}, J 7.3$, CMe), 0.95-1.11 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{CHH}), 1.31-1.57(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CHH}$ and $3-\mathrm{H}), 2.15(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.17(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 2.61(3 \mathrm{H}, \mathrm{s}$, CMe), 2.68 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), $3.10(1 \mathrm{H}$, dddd, $J 8.6,5.4,5.4$ and
5.4, 2-H), $3.57(1 \mathrm{H}, \mathrm{d}, J 5.4,1-\mathrm{CHH}), 3.59(1 \mathrm{H}, \mathrm{d}, J 5.4$, $1-\mathrm{CHH}), 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.89-5.01(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 6.58$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}$).

Methyl (4S,5S,2E)-4-[N-(4-methoxy-2,3,6-trimethylphenyl-sulfonyl)amino]-5-methylhept-2-enoate 31 . By a procedure identical with that described for the preparation of the enoate $\mathbf{1 4}$ from 10, the alcohol $30(4.5 \mathrm{~g}, 13.7 \mathrm{mmol})$ was converted into the title compound $31(5.04 \mathrm{~g}, 96 \%)$ as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 384.1841. $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NO}_{5} \mathrm{~S}$ requires $M+\mathrm{H}$, 384.1845]; $[a]_{\mathrm{D}}^{23}-31.9\left(c 1.13\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $0.80(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}), 0.85(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CMe}), 1.02-1.26$ $(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{CHH}), 1.35-1.62(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{CH} H$ and $5-\mathrm{H}), 2.11$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), $2.56(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.65(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.64(3 \mathrm{H}$, s, OMe), 3.72 (1 H , ddd, J 8.1, 7.8 and $5.4,4-\mathrm{H}), 3.84(3 \mathrm{H}, \mathrm{s}$, OMe), $4.65(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{NH}), 5.53(1 \mathrm{H}, \mathrm{dd}, J 15.7$ and 1.1 , $2-\mathrm{H}), 6.47(1 \mathrm{H}, \mathrm{dd}, J 15.7$ and $7.8,3-\mathrm{H}), 6.55(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}) ; m / z$ (FAB-LRMS) $384\left(\mathrm{MH}^{+}\right), 382,326,213$ (base peak), 197, 155, 149, 119, 91.
(4S,5S,2E)-4-[N-(4-Methoxy-2,3,6-trimethylphenylsulfonyl)-amino]-5-methylhept-2-en-1-ol 32. By a procedure identical with that described for the preparation of the alcohol 18 from 14 , the enoate $31(5.2 \mathrm{~g}, 13.6 \mathrm{mmol})$ was converted into the title compound 32 ($4.25 \mathrm{~g}, 88 \%$) as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}, 356.1900 . \mathrm{C}_{18} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{~S}$ requires $M+\mathrm{H}, 356.1895$]; $[a]_{\mathrm{D}}^{25}-7.26\left(c 1.02\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.78(3 \mathrm{H}, \mathrm{d}$, $J 6.5, \mathrm{CMe}), 0.83(3 \mathrm{H}, \mathrm{t}, J 7.0$, CMe), $0.99-1.15(1 \mathrm{H}, \mathrm{m}$, $6-\mathrm{CHH}), 1.21-1.54(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{CHH}$ and $5-\mathrm{H}), 2.15(3 \mathrm{H}, \mathrm{s}$, CMe), 2.58 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 2.66 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 3.65 (1 H , ddd, $J 7.8,7.3$ and $6.2,4-\mathrm{H}), 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.86(1 \mathrm{H}, \mathrm{d}, J 5.4$, $1-\mathrm{CHH}), 3.88(1 \mathrm{H}, \mathrm{d}, J 5.4,1-\mathrm{CH} H), 4.70(1 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{NH})$, $5.31(1 \mathrm{H}, \mathrm{dd}, J 15.4$ and $7.8,3-\mathrm{H}), 5.49(1 \mathrm{H}, \mathrm{ddd}, J 15.4,5.4$ and $5.4,2-\mathrm{H}), 6.56(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}) ; \mathrm{m} / \mathrm{z}(\mathrm{FAB}-L R M S) 356\left(\mathrm{MH}^{+}\right)$, 354, 338, 298, 230, 213 (base peak), 197, 165, 149, 119, 109, 91, 86.
(4S,5S,2E)-O-Methoxycarbonyl-4-[N-(4-methoxy-2,3,6-trimethylphenylsulfonyl)amino]-5-methylhept-2-en-1-ol 33. By a procedure identical with that described for the preparation of the carbonate 22 from 18, the alcohol $32(2.0 \mathrm{~g}, 5.63 \mathrm{mmol})$ was converted into the title compound $33(2.05 \mathrm{~g}, 88 \%)$ as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 414.1945. $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{NO}_{6} \mathrm{~S}$ requires $M+\mathrm{H}, 414.1950] ;[a]_{\mathrm{D}}^{18} 0 \pm 1\left(c 1.12\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.79(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}), 0.84(3 \mathrm{H}, \mathrm{t}, J 7.3$, CMe), 0.99-1.16 (1 H, m, 6-CHH), 1.31-1.57 (2 H, m, 6-CHH and $5-\mathrm{H}), 2.14(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.56(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.64(3 \mathrm{H}, \mathrm{s}$, CMe), 3.58-3.70 (1 H, m, 4-H), 3.77 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.85(3 \mathrm{H}, \mathrm{s}$, OMe), $4.30(1 \mathrm{H}$, dd, $J 14.3$ and $1.1,1-\mathrm{CHH}), 4.32(1 \mathrm{H}$, dd, $J 14.3$ and 1.6, 1-CHH), $4.49(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{NH}), 5.36(1 \mathrm{H}$, dd, $J 15.1$ and $1.6,3-\mathrm{H}), 5.37-5.44(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 6.55(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$; m / z (FAB-LRMS) $414\left(\mathrm{MH}^{+}\right), 412,356,338,213$ (base peak), 197, 149, 109.

(4S,5S,2E)-O-Methylsulfonyl-4-[N-(4-methoxy-2,3,6-

trimethylphenylsulfonyl)amino]-5-methylhept-2-en-1-ol 34. By a procedure similar to that described for the preparation of the mesylate 26 from 18, the alcohol $32(711 \mathrm{mg}, 2.0 \mathrm{mmol})$ was converted into the title compound $34(780 \mathrm{mg}, 90 \%)$ as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 434.1659. $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NO}_{6} \mathrm{~S}_{2}$ requires $M+\mathrm{H}, 434.1671]$; $[\alpha]_{\mathrm{D}}^{24}-17.5$ (c 0.902 in $\left.\mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.78(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}), 0.83(3 \mathrm{H}, \mathrm{t}$, $J 7.3, \mathrm{CMe}), 0.99-1.15(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{CHH}), 1.30-1.53(2 \mathrm{H}, \mathrm{m}$, 6-CHH and 5-H), 2.15 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 2.57 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 2.64 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), $2.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{Me}\right), 3.64-3.71(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$, $3.86(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.43-4.51\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2}\right), 4.54(1 \mathrm{H}, \mathrm{d}$, $J 7.8, \mathrm{NH}), 5.50(1 \mathrm{H}, \mathrm{dd}, J 15.7$ and $5.4,3-\mathrm{H}), 5.53(1 \mathrm{H}, \mathrm{m}$, 2-H), 6.57 ($1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}$); m / z (FAB-LRMS) $434\left(\mathrm{MH}^{+}\right), 376,338$, 213 (base peak), 197, 149, 134, 109.
(2R)-1-tert-Butyldimethylsiloxy-2-[N-(2,4,6-trimethylphenyl-sulfonyl)amino]propan-3-ol 35. By a procedure identical with that described for the preparation of the alcohol 18 from 14 , methyl (S)-O-tert-butyldimethylsilyl- N -(2,4,6-trimethylphenylsulfonyl)serinate ($8.3 \mathrm{~g}, 20.0 \mathrm{mmol}$) was converted into the title compound 35 ($4.87 \mathrm{~g}, 63 \%$), mp $87^{\circ} \mathrm{C}$ (colourless crystals from n-hexane) (Found: C, 55.8; H, 8.6; N, 3.4. $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{SSi}$ requires $\mathrm{C}, 55.8 ; \mathrm{H}, 8.6 ; \mathrm{N}, 3.6 \%) ;[a]_{\mathrm{D}}^{26}+16.3\left(c 0.808\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.02(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiMe}), 0.86(9 \mathrm{H}, \mathrm{s}$, CMe_{3}), $2.27(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.65(6 \mathrm{H}, \mathrm{s}$, $2 \times \mathrm{CMe}), 3.16-3.25(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.48-3.57(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{CHH}$ and $3-\mathrm{CHH}), 3.63-3.72(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{CHH}$ and $3-\mathrm{CHH}), 5.29$ $(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{NH}), 6.96(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$.
(2R)-1-Benzyloxy-2-[N-(2,4,6-trimethylphenylsulfonyl)-amino]propan-3-ol 36. By a procedure identical with that described for the preparation of the alcohol 18 from 14 , methyl (S)-O-benzyl- N-(2,4,6-trimethylphenylsulfonyl)serinate (5.7 g , 14.6 mmol) was converted into the title compound 36 (4.17 g , 79%) as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}, 364.1586$. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{~S}$ requires $M+\mathrm{H}, 364.1582$]; $[a]_{\mathrm{D}}^{27}+22.6$ (c 1.37 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.20-2.27(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 2.30$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), $2.62(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 3.34(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.39$ $(1 \mathrm{H}, \mathrm{dd}, J 9.2$ and $4.3,1-\mathrm{CHH}), 3.53(1 \mathrm{H}, \mathrm{dd}, J 9.2$ and 4.1, $1-\mathrm{CH} H), 3.53-3.59(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{CHH}), 3.69(1 \mathrm{H}, \mathrm{ddd}, J 11.6$, 4.3 and $4.3,3-\mathrm{CH} H), 4.38\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2}\right), 5.31(1 \mathrm{H}, \mathrm{d}, J 7.8$, NH), 6.93 ($2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}$), 7.19-7.38 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m/z (FABLRMS) $364\left(\mathrm{MH}^{+}\right), 362,256,242,182,167,150,119,91$ (base peak), $74,60$.

(2R,3R)-3-tert-Butyldimethylsiloxy-2-[N-(p-tolylsulfonyl)-

 amino]butan-1-ol 37. By a procedure identical with that described for the preparation of the alcohol 18 from 14 , methyl ($2 S, 3 R$)- O-tert-butyldimethylsilyl- N-(p-tolylsulfonyl)threoninate $(6.40 \mathrm{~g}, 15.9 \mathrm{mmol})$ was converted into the title compound $37(4.55 \mathrm{~g}, 76 \%)$ as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 374.1823. $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{SSi}$ requires $M+\mathrm{H}$, $374.1821] ;[a]_{\mathrm{D}}^{25}-10.9\left(c 1.32\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $0.04\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 0.92(3 \mathrm{H}, \mathrm{d}, J 6.2$, CMe), $2.19(1 \mathrm{H}$, dd, $J 7.6$ and $4.3, \mathrm{OH}), 2.42(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, $3.11(1 \mathrm{H}$, dddd, $J 7.8,6.5,5.7$ and $2.2,2-\mathrm{H}), 3.50(1 \mathrm{H}$, ddd, $J 10.8,7.6$ and $6.5,1-\mathrm{CHH}), 3.60(1 \mathrm{H}$, ddd, $J 10.8,5.7$ and 4.3, $1-\mathrm{CH} H), 4.00(1 \mathrm{H}, \mathrm{qd}, J 6.2$ and $2.2,3-\mathrm{H}), 5.02(1 \mathrm{H}, \mathrm{d}, J 7.8$, NH), 7.28-7.32 (2 H, m, Ph), 7.75-7.80 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m/z (FABLRMS) $374\left(\mathrm{MH}^{+}\right.$, base peak), 316, 242, 220, 198, 155, 139, 91, 73.Methyl (4R,2E)-5-tert-butyldimethylsiloxy-4-[N-(2,4,6-tri-methylphenylsulfonyl)amino]pent-2-enoate 38 and its (4R,2Z) isomer. By a procedure identical with that described for the preparation of the enoate $\mathbf{1 4}$ from $\mathbf{1 0}$, the alcohol $35(4.6 \mathrm{~g}, 11.9$ $\mathrm{mmol})$ was converted into the title compound 38 ($4.02 \mathrm{~g}, 77 \%$) and its (Z)-isomer ($301 \mathrm{mg}, 6 \%$). Compound 38: a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 442.2079. $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{NO}_{5} \mathrm{SSi}$ requires $M+\mathrm{H}, 442.2083] ;[\alpha]_{\mathrm{D}}^{27}-47.4\left(c 1.19\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.02(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiMe}), 0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 2.29(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CMe}), 2.61(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 3.50-3.61\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}_{2}\right), 3.68$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.83-3.92 (1 H, m, 4-H), $5.19(1 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{NH})$, $5.85(1 \mathrm{H}, \mathrm{d}, J 15.4,2-\mathrm{H}), 6.65(1 \mathrm{H}, \mathrm{dd}, J 15.4$ and $6.5,3-\mathrm{H})$, $6.94(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}) ; m / z(\mathrm{FAB}-L R M S) 442\left(\mathrm{MH}^{+}\right), 426,384$ (base peak), 256, 243, 183, 167, 119, 89, 73. (Z)-Isomer of 38: mp $44^{\circ} \mathrm{C}$ (colourless crystals from n-hexane) (Found: C, 56.8; H, 8.0; $\mathrm{N}, 2.9 . \mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NO}_{5} \mathrm{SSi}$ requires $\left.\mathrm{C}, 57.1 ; \mathrm{H}, 8.0 ; \mathrm{N}, 3.2 \%\right) ;[\alpha]_{\mathrm{D}}^{24}$ $-23.9\left(c 0.977\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.05(6 \mathrm{H}$, s, $2 \times \mathrm{SiMe}), 0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 2.29(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.59(6 \mathrm{H}, \mathrm{s}$, $2 \times \mathrm{CMe}), 3.51(1 \mathrm{H}$, dd, $J 9.7$ and 5.7, $5-\mathrm{CHH}), 3.65(3 \mathrm{H}, \mathrm{s}$, OMe), $3.66(1 \mathrm{H}, \mathrm{dd}, J 9.7$ and $4.1,5-\mathrm{CH} H), 4.79-4.89(1 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}), 5.43(1 \mathrm{H}, \mathrm{d}, J 5.4, \mathrm{NH}), 5.72$ ($1 \mathrm{H}, \mathrm{d}, J 11.9,2-\mathrm{H}), 6.12$ $(1 \mathrm{H}, \mathrm{dd}, J 11.9$ and $8.4,3-\mathrm{H}), 6.93(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$.

Methyl (4R,2E)-5-benzyloxy-4-[N-(2,4,6-trimethylphenyl-sulfonyl)amino]pent-2-enoate 39 and its $(4 R, 2 Z)$ isomer. By a procedure identical with that described for the preparation of the enoate 14 from 10 , the alcohol $36(4.0 \mathrm{~g}, 11.0 \mathrm{mmol})$ was converted into the title compound $39(2.7 \mathrm{~g}, 59 \%)$ and its (Z) isomer ($320 \mathrm{mg}, 7 \%$). Compound 39: a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 418.1684. $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{~S}$ requires $M+\mathrm{H}$, 418.1688]; $[\alpha]_{\mathrm{D}}^{25}-35.5$ (c 1.41 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $2.29(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.58(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 3.37-3.46(2 \mathrm{H}, \mathrm{m}$, $\left.5-\mathrm{CH}_{2}\right), 3.69(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.95-4.05(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.41(1 \mathrm{H}$, d, $J 12.2, \mathrm{PhCHH}), 4.42(1 \mathrm{H}, \mathrm{d}, J 12.2, \mathrm{PhCH} H), 5.20(1 \mathrm{H}, \mathrm{d}$, $J 6.8, \mathrm{NH}), 5.88(1 \mathrm{H}, \mathrm{dd}, J 15.7$ and $1.4,2-\mathrm{H}), 6.68(1 \mathrm{H}$, dd, $J 15.7$ and $6.5,3-\mathrm{H}), 6.91(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 7.20-7.38(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$; m / z (FAB-LRMS) $418\left(\mathrm{MH}^{+}\right), 416,386,310,296,290,234$, 209, 183, 167, 128, 119, 91 (base peak), 77. (Z)-Isomer of 39: a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 418.1692. $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{~S}$ requires $M+\mathrm{H}, 418.1688] ;[a]_{\mathrm{D}}^{25}-14.6\left(c 0.632\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.29(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.55(6 \mathrm{H}, \mathrm{s}$, $2 \times \mathrm{CMe}), 3.44(1 \mathrm{H}, \mathrm{dd}, J 9.7$ and $6.5,5-\mathrm{CHH}), 3.52(1 \mathrm{H}$, dd, $J 9.7$ and 4.1, 5-CHH), $3.65(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.37(1 \mathrm{H}, \mathrm{d}, J 12.2$, PhCHH), 4.38 (1 H, d, J 12.2, PhCHH), 4.99-5.09 (1 H, m, $4-\mathrm{H}), 5.43(1 \mathrm{H}, \mathrm{d}, J 5.1, \mathrm{NH}), 5.73(1 \mathrm{H}$, dd, $J 11.3$ and 1.6, $2-\mathrm{H}), 6.16(1 \mathrm{H}, \mathrm{dd}, J 11.3$ and $8.4,3-\mathrm{H}), 6.90(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 7.20-$ 7.37 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $m / z(\mathrm{FAB}-L R M S) 418\left(\mathrm{MH}^{+}\right), 296,234,212$, 183, 167, 119, 91 (base peak).

Methyl (4R,5R,2E)-5-tert-butyldimethylsiloxy-4-[N-(p-tolyl-sulfonyl)amino]hex-2-enoate 40 . By a procedure identical with that described for the preparation of the enoate $\mathbf{1 4}$ from $\mathbf{1 0}$, the alcohol $37(4.34 \mathrm{~g}, 11.6 \mathrm{mmol})$ was converted into the title compound $40(4.23 \mathrm{~g}, 85 \%) . \mathrm{mp} 63^{\circ} \mathrm{C}$ (colourless needles from n-hexane) [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 428.1918. $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{NO}_{5} \mathrm{SSi}$ requires $M+\mathrm{H}, 428.1927] ;[\alpha]_{\mathrm{D}}^{30}-47.4\left(c 1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)-0.02(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.02(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.84$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}$), $1.08(3 \mathrm{H}, \mathrm{d}, J 5.9, \mathrm{CMe}), 2.41(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, $3.68(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.78-3.89(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $5-\mathrm{H}), 4.99(1 \mathrm{H}$, $\mathrm{d}, J 7.8, \mathrm{NH}), 5.76(1 \mathrm{H}, \mathrm{d}, J 15.9,2-\mathrm{H}), 6.67(1 \mathrm{H}, \mathrm{dd}, J 15.9$ and 5.9, 3-H), 7.26-7.30 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.69-7.73 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m / z (FAB-LRMS) $428\left(\mathrm{MH}^{+}\right), 412,370,296,257,228,214$, $159,155,91,73$ (base peak).
(4R,2E)-5-tert-Butyldimethylsiloxy-4-[N-(2,4,6-trimethyl-phenylsulfonyl)amino]pent-2-en-1-ol 41. By a procedure identical with that described for the preparation of the alcohol $\mathbf{1 8}$ from $\mathbf{1 4}$, the enoate $\mathbf{3 8}(3.9 \mathrm{~g}, 8.83 \mathrm{mmol})$ was converted into the title compound $41(2.88 \mathrm{~g}, 79 \%)$ as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 414.2138. $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{NO}_{4} \mathrm{SSi}$ requires $M+\mathrm{H}$, 414.2134]; $[\alpha]_{\mathrm{D}}^{24}-26.6\left(c 1.53\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 0.029 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 0.032 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 0.87 ($9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}$), $1.11(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.62(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe})$, $3.47(1 \mathrm{H}$, dd, $J 10.0$ and $5.4,5-\mathrm{CHH}), 3.57(1 \mathrm{H}$, dd, $J 10.0$ and $4.3,5-\mathrm{CH} H), 3.70-3.78(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.89-3.92(2 \mathrm{H}, \mathrm{m}$, $\left.1-\mathrm{CH}_{2}\right), 5.18(1 \mathrm{H}, \mathrm{d}, J 5.4, \mathrm{NH}), 5.39(1 \mathrm{H}$, dddd, $J 15.7,7.8$, 1.6 and $1.6,3-\mathrm{H}), 5.65(1 \mathrm{H}$, dddd, $J 15.7,5.1,5.1$ and $0.8,2-\mathrm{H})$, 6.94 ($2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}$); m / z (FAB-LRMS) $414\left(\mathrm{MH}^{+}\right), 396,356,314$, 298, 256, 215, 197, 167, 119, 89, 73 (base peak), 59.

(4R,2E)-5-Benzyloxy-4-[N-(2,4,6-trimethylphenylsulfonyl)-

 amino]pent-2-en-1-ol 42. By a procedure identical with that described for the preparation of the alcohol 18 from 14 , the enoate $39(2.6 \mathrm{~g}, 6.23 \mathrm{mmol})$ was converted into the title compound $42(2.26 \mathrm{~g}, 93 \%)$ as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}, 390.1747 . \mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{~S}$ requires $\left.M+\mathrm{H}, 390.1739\right]$; $[a]_{\mathrm{D}}^{26}-23.2\left(c 0.896\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.25(1 \mathrm{H}$, dd, $J 5.9$ and $5.9, \mathrm{OH}), 2.29(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.59(6 \mathrm{H}, \mathrm{s}$, $2 \times \mathrm{CMe}), 3.37(1 \mathrm{H}, \mathrm{dd}, J 9.2$ and $5.7,5-\mathrm{CHH}), 3.40(1 \mathrm{H}$, dd, $J 9.2$ and 4.9, 5-CHH $), 3.85-3.93\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}\right.$ and $\left.1-\mathrm{CH}_{2}\right)$, $4.42(1 \mathrm{H}, \mathrm{d}, J 11.9, \mathrm{PhCHH}), 4.43(1 \mathrm{H}, \mathrm{d}, J 11.9, \mathrm{PhCHH})$, $5.19(1 \mathrm{H}, \mathrm{d}, J 5.9, \mathrm{NH}), 5.44(1 \mathrm{H}$, dddd, $J 15.9,7.6,1.4$ and $1.4,3-\mathrm{H}), 5.67(1 \mathrm{H}$, dddd, $J 15.9,5.4,5.4$ and $1.1,2-\mathrm{H}), 6.92$($2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}$), 7.22-7.38 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m / z (FAB-LRMS) 390 $\left(\mathrm{MH}^{+}\right), 372,290,268,200,183,167,119,91$ (base peak).
(4R,5R,2E)-5-tert-Butyldimethylsiloxy-4-[N-(p-tolylsulfonyl)-amino]hex-2-en-1-ol 43. By a procedure identical with that described for the preparation of the alcohol 18 from 14, the enoate $40(3.93 \mathrm{~g}, 9.19 \mathrm{mmol})$ was converted into the title compound $43(3.32 \mathrm{~g}, 90 \%), \mathrm{mp} 79^{\circ} \mathrm{C}$ [colourless crystals from n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (4:1)] (Found: C, 56.8; H, 8.6; N, 3.2. $\mathrm{C}_{19} \mathrm{H}_{33}-$ $\mathrm{NO}_{4} \mathrm{SSi}$ requires $\left.\mathrm{C}, 57.1 ; \mathrm{H}, 8.3 ; \mathrm{N}, 3.5 \%\right) ;[\alpha]_{\mathrm{D}}^{31}-26.4$ (c 1.39 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.01(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.02(3 \mathrm{H}, \mathrm{s}$, SiMe), $0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 1.07(3 \mathrm{H}, \mathrm{d}, J 5.9$, CMe), $1.26(1 \mathrm{H}$, dd, $J 5.9$ and $5.9, \mathrm{OH}), 2.41(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.56-3.64(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}), 3.73-3.81(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.92(1 \mathrm{H}, \mathrm{d}, J 5.1,1-\mathrm{CHH}), 3.94$ $(1 \mathrm{H}, \mathrm{d}, J 5.1,1-\mathrm{CH} H), 4.95(1 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{NH}), 5.43(1 \mathrm{H}, \mathrm{dd}$, $J 15.4$ and $6.5,3-\mathrm{H}), 5.58(1 \mathrm{H}$, ddd, $J 15.4,5.1$ and $5.1,2-\mathrm{H})$, 7.26-7.30 (2 H, m, Ph), 7.69-7.73 (2 H, m, Ph).
(4R,2E)-5-tert-Butyldimethylsiloxy-O-methoxycarbonyl-4[N-(2,4,6-trimethylphenylsulfonyl)amino]pent-2-en-1-ol 44. By a procedure identical with that described for the preparation of the carbonate 22 from 18, the alcohol $41(1.5 \mathrm{~g}, 3.63 \mathrm{mmol})$ was converted into the title compound $44(1.54 \mathrm{~g}, 90 \%), \mathrm{mp} 57^{\circ} \mathrm{C}$ [colourless shiny needles from n-hexane- $\mathrm{Et}_{2} \mathrm{O}(4: 1)$] [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 472.2186. $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{NO}_{6} \mathrm{SSi}$ requires $M+\mathrm{H}$, 472.2189]; $[a]_{\mathrm{D}}^{27}-22.8\left(c 0.996\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 0.019 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), $0.020(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right.$), $2.29(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.61(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 3.48(1 \mathrm{H}, \mathrm{dd}, J 9.9$ and $5.4,5-\mathrm{CHH}), 3.54(1 \mathrm{H}$, dd, $J 9.9$ and $4.1,5-\mathrm{CH} H), 3.70-$ 3.76 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 3.77 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.38-4.41 ($2 \mathrm{H}, \mathrm{m}$, $\left.1-\mathrm{CH}_{2}\right), 5.12(1 \mathrm{H}, \mathrm{d}, J 5.9, \mathrm{NH}), 5.51(1 \mathrm{H}, \mathrm{dd}, J 15.6$ and 6.8 , $3-\mathrm{H}), 5.61(1 \mathrm{H}$, ddd, $J 15.6,5.9$ and $5.9,2-\mathrm{H}), 6.93(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$; m / z (FAB-LRMS) $472\left(\mathrm{MH}^{+}\right), 414,396,366,326,298,256$, 213, 197, 167, 119, 73 (base peak).
(4R,2E)-5-Benzyloxy-O-methoxycarbonyl-4-[N-(2,4,6-tri-methylphenylsulfonyl)amino]pent-2-en-1-ol 45. By a procedure identical with that described for the preparation of the carbonate $\mathbf{2 2}$ from $\mathbf{1 8}$, the alcohol $\mathbf{4 2}(1.0 \mathrm{~g}, 2.57 \mathrm{mmol})$ was converted into the title compound $45(1.13 \mathrm{~g}, 98 \%)$ as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 448.1801. $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{NO}_{6} \mathrm{~S}$ requires $M+\mathrm{H}, 448.1794] ;[\alpha]_{\mathrm{D}}^{25}-18.4\left(c 0.706\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 2.29(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.58(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 3.33-3.43$ $\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}_{2}\right), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.85-3.93(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$, 4.37-4.47 (4 H, m, 1-CH2 and PhCH$), 5.13(1 \mathrm{H}, \mathrm{d}, J 5.9, \mathrm{NH})$, $5.55(1 \mathrm{H}, \mathrm{dd}, J 15.7$ and $5.9,3-\mathrm{H}), 5.62(1 \mathrm{H}$, ddd, $J 15.7,5.1$ and $5.1,2-\mathrm{H}), 6.91(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 7.22-7.38(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \mathrm{m} / \mathrm{z}$ (FAB-LRMS) $448\left(\mathrm{MH}^{+}\right), 446,372,342,326,264,183,159$, 119, 91 (base peak).
($4 R, 5 R, 2 E$)-5-tert-Butyldimethylsiloxy- O-methoxycarbonyl-4-[N-(p-tolylsulfonyl)amino]hex-2-en-1-ol 46. By a procedure identical with that described for the preparation of the carbonate 22 from $\mathbf{1 8}$, the alcohol $43(1.72 \mathrm{~g}, 4.30 \mathrm{mmol})$ was converted into the title compound $46(1.87 \mathrm{~g}, 95 \%)$ as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}, 458.2039 . \mathrm{C}_{21} \mathrm{H}_{36} \mathrm{NO}_{6} \mathrm{SSi}$ requires $M+\mathrm{H}, 458.2032] ;[\alpha]_{\mathrm{D}}^{32}-15.1\left(\right.$ c 1.39 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)-0.01(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.02(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.85(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CMe}_{3}\right), 1.08(3 \mathrm{H}, \mathrm{d}, J 5.9, \mathrm{CMe}), 2.41(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.63-3.70$ ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.76-3.82(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.40$ $\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2}\right), 4.89(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{NH}), 5.51(1 \mathrm{H}, \mathrm{dd}, J 15.7$ and $3.8,3-\mathrm{H}), 5.52(1 \mathrm{H}, \mathrm{d}, J 15.7,2-\mathrm{H}), 7.25-7.28(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 7.68-7.72 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m / z (FAB-LRMS) $458\left(\mathrm{MH}^{+}\right), 400,382$, 338, 228, 159 (base), 155, 115, 73.
(4R,2E)-5-tert-Butyldimethylsiloxy-O-methylsulfonyl-4-[N -(2,4,6-trimethylphenylsulfonyl)amino]pent-2-en-1-ol 47. By a procedure similar to that described for the preparation of the mesylate 26 from 18, the alcohol $41(300 \mathrm{mg}, 0.725 \mathrm{mmol})$ was converted into the title compound $47(314 \mathrm{mg}, 88 \%)$ as colour-
less crystals, $\mathrm{mp} 57-59^{\circ} \mathrm{C}$ [from n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (1:1)] [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 492.1917. $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{NO}_{6} \mathrm{~S}_{2}$ requires $M+\mathrm{H}$, $492.1910]$; $[a]_{\mathrm{D}}^{26}-29.8$ (c 1.33 in CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}\right.$ in CDCl_{3}) $0.02\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, $2.61(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 2.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{Me}\right), 3.48(1 \mathrm{H}, \mathrm{dd}, J 9.7$ and $5.1,5-\mathrm{CHH}), 3.52(1 \mathrm{H}, \mathrm{dd}, J 9.7$ and $4.3,5-\mathrm{CH} H), 3.72-$ $3.77(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.52-4.54\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2}\right), 5.17(1 \mathrm{H}$, d, $J 5.9, \mathrm{NH}), 5.61-5.67(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H=\mathrm{CH}), 5.69(1 \mathrm{H}, \mathrm{dd}$, $J 15.7$ and $5.4, \mathrm{CH}=\mathrm{CH}), 6.95(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}) ; \mathrm{m} / z$ ($\mathrm{FAB}-$ LRMS) $492\left(\mathrm{MH}^{+}\right), 490,434,396,366,256,153,119,73$ (base peak).
(4R,2E)-5-Benzyloxy-O-methylsulfonyl-4-[N-(2,4,6-trimethyl-phenylsulfonyl)aminolpent-2-en-1-ol 48. By a procedure similar to that described for the preparation of the mesylate 26 from 18, the alcohol $42(100 \mathrm{mg}, 0.257 \mathrm{mmol})$ was converted into the title compound $\mathbf{4 8}(115 \mathrm{mg}, 96 \%)$ as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 468.1518. $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}_{6} \mathrm{~S}_{2}$ requires $M+\mathrm{H}$, 468.1514]; [a] ${ }_{\mathrm{D}}^{26}-20.7\left(c 1.09\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.58(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 2.95(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SO}_{2} \mathrm{Me}\right), 3.33-3.42\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}_{2}\right), 3.85-3.95(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$, $4.40(1 \mathrm{H}, \mathrm{d}, J 11.9, \mathrm{PhC} H \mathrm{H}), 4.42(1 \mathrm{H}, \mathrm{d}, J 11.9$, PhCHH), 4.47-4.60 ($2 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2}$), $5.17(1 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{NH}), 5.64-5.72$ $(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 5.72(1 \mathrm{H}, \mathrm{dd}, J 15.4$ and $4.9,3-\mathrm{H}), 6.92(2 \mathrm{H}, \mathrm{s}$, $\mathrm{Ph}), 7.20-7.37$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m / z (FAB-LRMS) $468\left(\mathrm{MH}^{+}\right), 372$, 342, 282, 183, 159, 119, 91 (base peak).
(4R,5R,2E)-5-tert-Butyldimethylsiloxy-O-methylsulfonyl-4[N-(p-tolylsulfonyl)amino]hex-2-en-1-ol 49. By a procedure similar to that described for the preparation of the mesylate 26 from alcohol 18, the alcohol $43(100 \mathrm{mg}, 0.25 \mathrm{mmol})$ was converted into the title compound $49(119 \mathrm{mg}, 99 \%)$ as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 478.1745. $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{NO}_{6} \mathrm{~S}_{2} \mathrm{Si}$ requires $M+\mathrm{H}, 478.1753] ;[a]_{\mathrm{D}}^{27}-24.5\left(c 1.24 \mathrm{in}_{\mathrm{CHCl}}^{3}\right.$) $; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)-0.01(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.02(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.85(9$ $\mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}$), $1.03(3 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{CMe}), 2.42(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.98$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{Me}$), $3.63-3.69(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.79(1 \mathrm{H}, \mathrm{qd}, J 6.2$ and $3.0,5-\mathrm{H}), 4.54-4.58\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2}\right), 4.93(1 \mathrm{H}, \mathrm{d}, J 7.6$, NH), $5.58-5.66(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H=\mathrm{CH}), 5.67(1 \mathrm{H}, \mathrm{dd}, J 15.7$ and 5.4, $\mathrm{CH}=\mathrm{CH}$), 7.27-7.31 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.69-7.73 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m / z (FAB-LRMS) $478\left(\mathrm{MH}^{+}\right), 420,382,338,228,159,115,73$ (base peak), 59.

(3S,4S)-O-Methoxycarbonyl-5-methyl-4-[N-(2,4,6-tri-

 methylphenylsulfonyl)amino]hex-1-en-3-ol 52. By a procedure identical with that described for the preparation of the carbonate 22 from 18, the known alcohol $50^{21 c}(218 \mathrm{mg}, 0.7 \mathrm{mmol})$ was converted into the title compound $52(232 \mathrm{mg}, 90 \%)$ as colourless prisms, $\mathrm{mp} 72^{\circ} \mathrm{C}$ [from n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (2:1)] (Found: C, 58.2; $\mathrm{H}, 7.4 ; \mathrm{N}, 3.9 . \mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S}$ requires $\mathrm{C}, 58.5 ; \mathrm{H}, 7.4 ; \mathrm{N}$, $3.8 \%) ;[a]_{\mathrm{D}}^{20}-29.6\left(c 1.03\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.88$ ($3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}$), $0.89(3 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{CMe}), 1.75-1.92(1 \mathrm{H}$, $\mathrm{m}, 5-\mathrm{H}), 2.29(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, $2.62(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe})$, $3.33(1 \mathrm{H}$, ddd, $J 9.5,6.2$ and $3.8,4-\mathrm{H}), 3.71(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.75(1 \mathrm{H}, \mathrm{d}$, $J 9.5, \mathrm{NH}), 5.01(1 \mathrm{H}$, ddd, $J 10.3,0.8$ and $0.8,1-\mathrm{CHH}), 5.15$ ($1 \mathrm{H}, \mathrm{dd}, J 7.0$ and $3.8,3-\mathrm{H}$), 5.20 (1 H , ddd, $J 17.1,1.4$ and 1.4 , $1-\mathrm{CHH}), 5.48(1 \mathrm{H}$, ddd, $J 17.1,10.3$ and $7.0,2-\mathrm{H}), 6.92(2 \mathrm{H}, \mathrm{s}$, Ph).(3R,4S)-O-Methoxycarbonyl-5-methyl-4-[N-(2,4,6-trimethyl-phenylsulfonyl)amino]hex-1-en-3-ol 53. By a procedure identical with that described for the preparation of the carbonate 22 from 18, the known alcohol $\mathbf{5 1}^{21 c}(80 \mathrm{mg}, 0.257 \mathrm{mmol})$ was converted into the title compound $\mathbf{5 3}(85 \mathrm{mg}, 89 \%)$ as colourless crystals, $\mathrm{mp} 91{ }^{\circ} \mathrm{C}$ [from n-hexane- $\left.\mathrm{Et}_{2} \mathrm{O}(4: 1)\right]$ (Found: C, 58.3 ; $\mathrm{H}, 7.3 ; \mathrm{N}, 3.7 . \mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S}$ requires $\mathrm{C}, 58.5 ; \mathrm{H}, 7.4 ; \mathrm{N}, 3.8 \%$); $[a]_{\mathrm{D}}^{20}+11.4\left(c 0.70\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.86(3 \mathrm{H}, \mathrm{d}$, $J 7.0, \mathrm{CMe}), 0.91(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}), 1.75-1.92(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, $2.29(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.62(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 3.39(1 \mathrm{H}, \mathrm{ddd}, J 9.7$, 4.9 and $4.6,4-\mathrm{H}), 3.69(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.65(1 \mathrm{H}, \mathrm{d}, J 9.7, \mathrm{NH})$,
$5.02(1 \mathrm{H}$, dddd, $J 5.9,4.6,1.1$ and $1.1,3-\mathrm{H}), 5.23(1 \mathrm{H}$, ddd, $J 10.6,1.1$ and $1.1,1-\mathrm{C} H \mathrm{H}), 5.26(1 \mathrm{H}$, ddd, $J 17.3,1.4$ and 1.4 , $1-\mathrm{CHH}), 5.67(1 \mathrm{H}$, ddd, $J 17.3,10.6$ and $5.9,2-\mathrm{H}), 6.93(2 \mathrm{H}, \mathrm{s}$, $\mathrm{Ph})$.

General procedure for aziridination reaction of acyclic allylic carbonates 22-25 and 33 with tetrakis(triphenylphosphine)palladium(0): synthesis of $(2 R, 3 S)$-3-isopropyl- N - $(2,4,6-$ trimethylphenylsulfonyl)-2-vinylaziridine 54 and its ($2 S, 3 S$)isomer 55 from the carbonate 22
A stirred mixture of the allylic carbonate $22(369 \mathrm{mg}, 1 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(57.7 \mathrm{mg}, 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ in dry THF (3 cm^{3}) was heated at $60^{\circ} \mathrm{C}$ for 20 min . The mixture was concentrated under reduced pressure to leave an oil, which was flash chromatographed on a short silica gel column with n-hexaneEtOAc (10:1) to give a $94: 6$ mixture of the title compounds 54 and 55 ($210 \mathrm{mg}, 72 \%$ combined yield). The mixture was flash chromatographed over silica gel. Elution with n-hexane-EtOAc (12:1) gave 54 ($197 \mathrm{mg}, 68 \%$) and further elution yielded $\mathbf{5 5}$ ($13 \mathrm{mg}, 4 \%$). Compound 54: 98% ee $(2 R, 3 S)$ by HPLC [Daicel Chiralcel OD, n-hexane-propan-2-ol $=99.5: 0.5\left(0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right)$, ($2 R, 3 S$)-isomer $24.7 \mathrm{~min},(2 S, 3 R)$-isomer 22.1 min$]$; colourless prisms, $\mathrm{mp} 46^{\circ} \mathrm{C}$ (from cold n-hexane) (Found: C, $65.4 ; \mathrm{H}, 8.0$; $\mathrm{N}, 4.7 . \mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 65.5 ; \mathrm{H}, 7.9 ; \mathrm{N}, 4.8 \%$); $[d]_{\mathrm{D}}^{20}$ $-11.0\left(c 1.20\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.78(3 \mathrm{H}, \mathrm{d}$, $J 6.8, \mathrm{CMe}), 0.88(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CMe}), 1.34-1.53(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Me}_{2} \mathrm{C} H\right), 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.56(1 \mathrm{H}$, dd, $J 10.3$ and 7.6 , $3-\mathrm{H}), 2.70(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 3.41(1 \mathrm{H}, \mathrm{dd}, J 7.6$ and $6.8,2-\mathrm{H})$, $5.27(1 \mathrm{H}, \mathrm{dd}, J 10.3$ and $1.1, \mathrm{C}=\mathrm{C} H \mathrm{H}), 5.41(1 \mathrm{H}, \mathrm{dd}, J 17.1$ and 1.1, $\mathrm{C}=\mathrm{CH} H), 5.64(1 \mathrm{H}$, ddd, J 17.1, 10.3 and 6.8 , $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 6.95(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$. Compound 55: 98% ee $(2 S, 3 S)$ by HPLC [Daicel Chiralcel OD, n-hexane-propan-2-ol $=99.5: 0.5$ $\left(0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right),(2 S, 3 S)$-isomer $27.5 \mathrm{~min},(2 R, 3 R)$-isomer 24.4 min]; colourless prisms, $\mathrm{mp} 67^{\circ} \mathrm{C}$ (from n-hexane) (Found: C, 65.3; H, 8.0; N, 4.55. $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}$ requires C, $65.5 ; \mathrm{H}, 7.9 ; \mathrm{N}$, $4.8 \%) ;[a]_{\mathrm{D}}^{20}-88.9\left(c 1.90\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.70$ $(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}), 0.87(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CMe}), 1.42-1.57(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{Me}_{2} \mathrm{CH}\right), 2.29(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.70(6 \mathrm{H}, 2 \times \mathrm{CMe}), 2.80(1 \mathrm{H}$, dd, $J 7.3$ and $4.3,3-\mathrm{H}), 3.11(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and $4.3,2-\mathrm{H}), 5.35$ ($1 \mathrm{H}, \mathrm{dd}, J 10.3$ and $1.4, \mathrm{C}=\mathrm{CHH}$), $5.50(1 \mathrm{H}, \mathrm{dd}, J 17.3$ and 1.4 , $\mathrm{C}=\mathrm{CH} H), 6.17\left(1 \mathrm{H}, \mathrm{ddd}, J 17.3,10.3\right.$ and $\left.9.5, \mathrm{C} H=\mathrm{CH}_{2}\right), 6.93$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}$).

General procedure for base-promoted aziridination of allylic

 mesylates 26-29, 34 and 47-49: aziridination of the mesylate 26 by exposure to sodium hydride in DMF. Synthesis of 3-isopropyl-2-vinyl- N -(2,4,6-trimethylphenylsulfonyl)aziridines 54 and 55To a stirred suspension of $\mathrm{NaH}(7.2 \mathrm{mg}, 0.3 \mathrm{mmol})$ in DMF $\left(0.6 \mathrm{~cm}^{3}\right)$ under argon was added a solution of the allylic mesylate $26(78 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\operatorname{DMF}\left(0.4 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. After $0.5 \mathrm{~h}, 0.5 \mathrm{~cm}^{3}$ of a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added to the mixture. The whole was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the extract was washed with water, and dried over MgSO_{4}. Usual work-up followed by flash chromatography over a short silica gel column with n-hexane-EtOAc (12:1) gave a $26: 74$ mixture of the aziridines $\mathbf{5 4}$ and $\mathbf{5 5}$ ($39 \mathrm{mg}, 66 \%$ combined yield). The mixture was flash chromatographed over silica gel. Elution with n-hexane-EtOAc (12:1) gave 54 ($10.1 \mathrm{mg}, 17 \%$) and further elution yielded 55 ($29 \mathrm{mg}, 49 \%$).

Synthesis of (2R,3S)-N-(p-tolylsulfonyl)-3-(2-methylpropyl)-2vinylaziridine 56 and its ($2 S, 3 S$)-isomer 57 from the carbonate 23

By a procedure similar to that described for the aziridination of 22, the allylic carbonate $\mathbf{2 3}$ ($50 \mathrm{mg}, 0.141 \mathrm{mmol}$) was converted into a 94:6 mixture of the title compounds 56 and $57(26 \mathrm{mg}$, 66% combined yield) by treatment with $4 \mathrm{~mol} \%$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in THF at $65^{\circ} \mathrm{C}$ for 10 min followed by flash chromatography on a short silica gel column with n-hexane-EtOAc (4:1). The mix-
ture was flash chromatographed over silica gel. Elution with n-hexane-EtOAc ($8: 1$) gave $\mathbf{5 6}(24.4 \mathrm{mg}, \mathbf{6 2 \%}$) and further elution yielded 57 ($1.6 \mathrm{mg}, 4 \%$). Compound 56: 98% ee $(2 R, 3 S)$ by HPLC [Daicel Chiralcel OD, n-hexane-propan-2-ol $=99.4: 0.6$ $\left(0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right),(2 R, 3 S)$-isomer 30.6 min$]$; a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 280.1376. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}$ requires $M+\mathrm{H}, 280.1371] ;[a]_{\mathrm{D}}^{25}-6.08\left(c 0.987\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.88(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}), 0.89(3 \mathrm{H}, \mathrm{d}, J 6.8$, CMe), $1.30(1 \mathrm{H}$, ddd, $J 14.0,7.8$ and $6.2, \mathrm{CHH}), 1.39(1 \mathrm{H}$, ddd, J 14.0, 7.0 and $5.7, \mathrm{CH} H), 1.53-1.68\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{2} \mathrm{CH}\right)$, $2.44(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.97(1 \mathrm{H}$, ddd, $J 7.8,7.3$ and $7.0,3-\mathrm{H})$, $3.33(1 \mathrm{H}, \mathrm{dd}, J 7.3$ and $7.3,2-\mathrm{H})$, $5.26(1 \mathrm{H}$, ddd, $J 10.3,1.1$ and $1.1, \mathrm{C}=\mathrm{C} H \mathrm{H}), 5.38(1 \mathrm{H}$, ddd, $J 17.3,1.1$ and 1.1 , $\mathrm{C}=\mathrm{CH} H), 5.59\left(1 \mathrm{H}\right.$, ddd, $J 17.3,10.3$ and $\left.7.3, \mathrm{CH}=\mathrm{CH}_{2}\right)$, 7.31-7.34 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.80-7.84 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m/z (FABLRMS) $280\left(\mathrm{MH}^{+}\right.$, base peak), 155, 139, 124, 91, 82, 68. Compound 57: 98% ee $(2 S, 3 S)$ by HPLC [Daicel Chiralcel OD, n-hexane-propan-2-ol $=$ 99.4:0.6 ($0.5 \quad \mathrm{~cm}^{3} \mathrm{~min}^{-1}$), ($2 S, 3 S$)-isomer 41.1 min]; colourless crystals, $\mathrm{mp} 59^{\circ} \mathrm{C}$ (from n-hexane) [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 280.1368. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}$ requires $M+\mathrm{H}, 280.1371]$; $[a]_{\mathrm{D}}^{25}-69.8$ (c 0.106 in CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.88(3 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{CMe}), 0.90(3 \mathrm{H}, \mathrm{d}$, $J 6.2, \mathrm{CMe}), 1.36-1.41(1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}), 1.58-1.68(2 \mathrm{H}, \mathrm{m}$, CHH and $\mathrm{Me}_{2} \mathrm{CH}$), 2.43 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 2.92-2.98 ($1 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}), 3.08(1 \mathrm{H}, \mathrm{dd}, J 8.9$ and $4.3,2-\mathrm{H}), 5.34(1 \mathrm{H}, \mathrm{d}, J 10.3$, $\mathrm{C}=\mathrm{C} H \mathrm{H}), 5.47(1 \mathrm{H}, \mathrm{d}, J 16.7, \mathrm{C}=\mathrm{CH} H), 6.02(1 \mathrm{H}$, ddd, $J 16.7,10.3$ and $\left.8.9, \mathrm{C} H=\mathrm{CH}_{2}\right), 7.29-7.32(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.81-$ $7.84(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z$ (FAB-LRMS) $280\left(\mathrm{MH}^{+}\right.$, base peak), 155, 139, 124, 91, 82, 55.

Synthesis of (2R,3S)-3-(2-methylpropyl)- N-(2,2,5,7,8-penta-methylchroman-6-ylsulfonyl)-2-vinylaziridine 58 and its ($2 S, 3 S$)isomer 59 from the carbonate 24

By a procedure similar to that described for the aziridination of 22, the allylic carbonate 24 ($480 \mathrm{mg}, 1.03 \mathrm{mmol}$) was converted into a $97: 3$ mixture of the title compounds $\mathbf{5 8}$ and $\mathbf{5 9}(238 \mathrm{mg}$, 59% combined yield) by treatment with $4 \mathrm{~mol} \%$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in THF at $20^{\circ} \mathrm{C}$ for 6 h followed by flash chromatography over a short silica gel column with n-hexane-EtOAc $(8: 1)$. The mixture was flash chromatographed over silica gel. Elution with n-hexane-EtOAc (12:1) gave 58 ($231 \mathrm{mg}, 57 \%$) and further elution yielded 59 ($7 \mathrm{mg}, 2 \%$). Compound 58: 98% ee $(2 R, 3 S)$ by HPLC [Daicel Chiralcel OD, n-hexane-propan-2-ol $=99.5: 0.5$ $\left(0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right),(2 R, 3 S)$-isomer 26.3 min$]$; a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 392.2252. $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{NO}_{3} \mathrm{~S}$ requires $M+\mathrm{H}, 392.2259] ;[a]_{\mathrm{D}}^{16}+4.65\left(c 1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.83(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CMe}), 0.87(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CMe})$, 1.18-1.44 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{2} \mathrm{CHCH}_{2}$), $1.31(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 1.53-$ $1.59\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{2} \mathrm{CH}\right), 1.83\left(2 \mathrm{H}, \mathrm{t}, J 6.8,3^{\prime}-\mathrm{CH}_{2}\right), 2.12(3 \mathrm{H}, \mathrm{s}$, CMe), 2.59 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 2.61 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 2.65 ($2 \mathrm{H}, \mathrm{t}, J 6.8$, $\left.4^{\prime}-\mathrm{CH}_{2}\right), 2.92-3.00(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.38(1 \mathrm{H}, \mathrm{dd}, J 6.8$ and 6.8 , $2-\mathrm{H}), 5.26(1 \mathrm{H}, \mathrm{dd}, J 10.3$ and $0.7, \mathrm{C}=\mathrm{CHH}), 5.37(1 \mathrm{H}, \mathrm{dd}$, $J 17.1$ and $0.7, \mathrm{C}=\mathrm{CH} H), 5.63(1 \mathrm{H}$, ddd, $J 17.1,10.3$ and 6.8 , $\mathrm{C} H=\mathrm{CH}_{2}$); m / z (FAB-LRMS) $392\left(\mathrm{MH}^{+}\right), 267$ (base peak), 251, 219, 203, 187, 147, 124. Compound 59: 98% ee $(2 S, 3 S)$ by HPLC [Daicel Chiralcel OD, n-hexane-propan-2-ol $=99.5: 0.5$ ($0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$), ($2 S, 3 S$)-isomer 30.8 min$]$; a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}, \quad 329.2260 . \mathrm{C}_{22} \mathrm{H}_{34} \mathrm{NO}_{3} \mathrm{~S}$ requires $M+\mathrm{H}, 392.2259] ;[a]_{\mathrm{D}}^{25}-54.7\left(c 0.42\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.87(3 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{CMe}), 0.88(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe})$, $1.31(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 1.32(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 1.34-1.44(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Me}_{2} \mathrm{CHCHH}\right), 1.52-1.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{2} \mathrm{CHCHH}\right.$ and $\mathrm{Me}_{2} \mathrm{CH}$), $1.82\left(2 \mathrm{H}, \mathrm{t}, J 7.0,3^{\prime}-\mathrm{CH}_{2}\right), 2.12(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.58(3 \mathrm{H}, \mathrm{s}$, CMe), $2.60(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.64\left(2 \mathrm{H}, \mathrm{t}, J 7.0,4^{\prime}-\mathrm{CH}_{2}\right), 2.93(1 \mathrm{H}$, ddd, $J 7.6,5.1$ and $4.1,3-\mathrm{H}), 3.09(1 \mathrm{H}$, dd, $J 9.2$ and $4.1,2-\mathrm{H})$, $5.28(1 \mathrm{H}, \mathrm{dd}, J 10.3$ and 1.4, C=CHH), $5.44(1 \mathrm{H}, \mathrm{dd}, J 17.0$ and $1.1, \mathrm{C}=\mathrm{CH} H), 6.01(1 \mathrm{H}$, ddd, $J 17.0,10.3$ and 9.2 , $\mathrm{C} H=\mathrm{CH}_{2}$); m / z (FAB-LRMS) $392\left(\mathrm{MH}^{+}\right), 267,251,219,203$, 187, 147, 124 (base peak).

Synthesis of (2R,3S)-3-benzyl- N-(2,4,6-trimethylphenylsulfonyl)-2-vinylaziridine 60 and its ($2 S, 3 S$)-isomer 61 from the carbonate 25

By a procedure similar to that described for the aziridination of 22, the allylic carbonate $\mathbf{2 5}(160 \mathrm{mg}, 0.383 \mathrm{mmol})$ was converted into a 95:5 mixture of the title compounds $\mathbf{6 0}$ and $\mathbf{6 1}(65 \mathrm{mg}$, 50% combined yield) by treatment with $4 \mathrm{~mol} \%$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in THF at $65^{\circ} \mathrm{C}$ for 5 min followed by flash chromatography over a short silica gel column with n-hexane-EtOAc (5:1). The mixture was flash chromatographed over silica gel. Elution with n-hexane-EtOAc ($10: 1$) gave $\mathbf{6 0}(62 \mathrm{mg}, 48 \%$) and further elution yielded 61 ($3 \mathrm{mg}, 2 \%$). Compound 60: 98\% ee $(2 R, 3 S)$ by HPLC [Daicel Chiralcel OD, n-hexane-propan- 2 -ol $=$ 99.2:0.8 $\left(0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right)$, $(2 R, 3 S)$-isomer 39.2 min$]$; colourless needles, $\mathrm{mp} 71^{\circ} \mathrm{C}$ [from n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (3:1)] (Found: C, 70.15; H, 6.8; N, 4.15. $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}$ requires C, 70.35; H, 6.8; N, $4.1 \%) ;[a]_{\mathrm{D}}^{24}-24.8\left(c 0.935\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.30$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.58(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 2.66(1 \mathrm{H}, \mathrm{dd}, J 14.6$ and 7.6, PhCHH), $2.74(1 \mathrm{H}, \mathrm{dd}, J 14.6$ and $5.7, \mathrm{PhCH} H), 3.10$ $(1 \mathrm{H}$, ddd, $J 7.6,6.8$ and $5.7,3-\mathrm{H}), 3.48(1 \mathrm{H}, \mathrm{dd}, J 6.8$ and $6.8,2-\mathrm{H}), 5.38(1 \mathrm{H}, \mathrm{d}, J 10.5, \mathrm{C}=\mathrm{CHH}), 5.50(1 \mathrm{H}, \mathrm{d}, J 17.3$, $\mathrm{C}=\mathrm{CH} H), 5.78\left(1 \mathrm{H}\right.$, ddd, $J 17.3,10.5$ and $\left.6.8, \mathrm{C} H=\mathrm{CH}_{2}\right)$, 6.85 ($2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}$), 6.95-7.00 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.05-7.11 ($3 \mathrm{H}, \mathrm{m}$, Ph). Compound 61: colourless needles, mp 105-106 ${ }^{\circ} \mathrm{C}$ [from n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (3:1)] [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}, 342.1520$. $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}$ requires $M+\mathrm{H}, 342.1528$]; $[a]_{\mathrm{D}}^{25}-35.5$ (c 0.077, $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.54(6 \mathrm{H}$, $\mathrm{s}, 2 \times \mathrm{CMe})$, $2.66(1 \mathrm{H}$, dd, $J 14.0$ and $6.8, \mathrm{PhCHH}), 3.00$ $(1 \mathrm{H}, \mathrm{dd}, J 14.0$ and $4.9, \mathrm{PhCH} H), 3.16(1 \mathrm{H}$, ddd, $J 6.8,4.9$ and $3.8,3-\mathrm{H}), 3.21(1 \mathrm{H}, \mathrm{dd}, J 8.9$ and $3.8,2-\mathrm{H}), 5.36(1 \mathrm{H}$, dd, $J 10.0$ and $1.1, \mathrm{C}=\mathrm{C} H \mathrm{H}), 5.52(1 \mathrm{H}, \mathrm{dd}, J 17.3$ and 1.1 , $\mathrm{C}=\mathrm{CH} H), 6.08\left(1 \mathrm{H}\right.$, ddd, $J 17.3,10.0$ and $\left.8.9, \mathrm{C} H=\mathrm{CH}_{2}\right), 6.85$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}$), 6.89-6.93 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.02-7.15 (3 H, m, Ph); m/z (FAB-LRMS) $342\left(\mathrm{MH}^{+}\right), 183,158,143,119$ (base peak), 91.

Synthesis of (3R,4S,5S)-5-methyl-3,4-epimino- N-(4-methoxy-

 2,3,6-trimethylphenylsulfonyl)hept-1-ene 62 and its ($3 S, 4 S, 5 S$)isomer 63 from the carbonate 33By a procedure similar to that described for the aziridination of 22, the allylic carbonate $33(980 \mathrm{mg}, 2.37 \mathrm{mmol})$ was converted into a $98: 2$ mixture of the title compounds $\mathbf{6 2}$ and $\mathbf{6 3}(680 \mathrm{mg}$, 85% combined yield) by treatment of $\mathbf{3 3}$ with $2 \mathrm{~mol} \% \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in THF at $60^{\circ} \mathrm{C}$ for 5 min followed by chromatography over a short silica gel column with n-hexane-EtOAc (15:1). The mixture was flash chromatographed over silica gel. Elution with n-hexane-EtOAc ($30: 1$) gave $\mathbf{6 2}(666 \mathrm{mg}, 83 \%)$ and further elution yielded 63 ($14 \mathrm{mg}, 2 \%$). Compound 62: 98% ee ($3 R, 4 S, 5 S$) by HPLC [Daicel Chiralcel OD, n-hexane-propan- 2 -ol $=$ 99.4:0.6 $\left(0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right),(3 R, 4 S, 5 S)$-isomer 43.0 min$]$; a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 338.1798. $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{~S}$ requires $M+\mathrm{H}, 338.1789$]; $[a]_{\mathrm{D}}^{26}+0.83\left(c \quad 0.803\right.$ in CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.79(\mathrm{t}, J 7.6, \mathrm{CMe}), 0.85(\mathrm{~d}, J 7.0, \mathrm{CMe})$, $1.04-1.45\left(3 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}\right.$ and $\left.6-\mathrm{CH}_{2}\right), 2.15(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.63-$ $2.68(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.68(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.69(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.35$ $(1 \mathrm{H}, \mathrm{dd}, J 7.0$ and $7.0,3-\mathrm{H}), 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.26(1 \mathrm{H}, \mathrm{d}$, $J 10.0,1-\mathrm{CHH}), 5.38(1 \mathrm{H}, \mathrm{d}, J 17.0,1-\mathrm{CH} H)$, $5.64(1 \mathrm{H}$, ddd, $J 17.0,10.0$ and $7.0,2-\mathrm{H}), 6.56(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}) ; m / z$ (FAB-LRMS) 338, $\left(\mathrm{MH}^{+}\right), 336,213,197,165,149,124$ (base peak), 119, 69, 41. Compound 63: 98% ee $(3 S, 4 S, 5 S)$ by HPLC [Daicel Chiralcel OD, n-hexane-propan-2-ol $=99.4: 0.6 \quad\left(0.5 \mathrm{~cm}^{3}\right.$ $\min ^{-1}$), $(3 R, 4 S, 5 S)$-isomer 47.6 min]; colourless prisms, mp $72{ }^{\circ} \mathrm{C}$ (from n-hexane) (Found: C, 64.1; H, 8.1; N, 4.0. $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}$ requires C, 64.1; H, 8.1; N, 4.15\%); [a] $]_{\mathrm{D}}^{26}-50.7$ (c 0.856 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.75(3 \mathrm{H}, \mathrm{t}, J 7.3$, CMe), 0.86 ($3 \mathrm{H}, \mathrm{d}, J 6.8$, CMe), $0.97-1.14$ ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{CHH}$), 1.19-1.38 ($2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and $6-\mathrm{CH} H), 2.15(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.68$ $(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 2.87(1 \mathrm{H}, \mathrm{dd}, J 7.3$ and $4.3,4-\mathrm{H}), 3.07(1 \mathrm{H}$, dd, $J 9.5$ and $4.3,3-\mathrm{H}), 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.32(1 \mathrm{H}, \mathrm{d}, J 10.3$,

1-CHH), $5.47(1 \mathrm{H}, \mathrm{d}, J 17.3,1-\mathrm{CH} H), 6.18$ (1 H , ddd, $J 17.3$, 10.3 and $9.5,2-\mathrm{H}), 6.55(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$.

Synthesis of (2R,3R)-2-tert-butyldimethylsiloxymethyl- N-(2,4,6-trimethylphenylsulfonyl)-3-vinylaziridine 64 and its ($2 R, 3 S$)isomer 65 from the mesylate 47

By a procedure identical with that described for the aziridination of $\mathbf{2 6}$, the allylic mesylate $\mathbf{4 7}(98.3 \mathrm{mg}, 0.2 \mathrm{mmol})$ was converted into a mixture of 2,3-cis- and 2,3-trans-aziridines 64 and $65(\mathbf{6 4 : 6 5}=51: 49)$ by treatment with NaH in DMF. The mixture was flash chromatographed over silica gel. Elution with n-hexane- CHCl_{3}-EtOAc (20:5:1) gave $\mathbf{6 5}(24 \mathrm{mg}, 30 \%)$ and further elution yielded 64 ($25 \mathrm{mg}, 32 \%$). Compound $\mathbf{6 4}$: 98% ee ($2 R, 3 R$) by HPLC [Daicel Chiralcel OD, n-hexane-propan-2ol $=99.5: 0.5\left(0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right),(2 R, 3 R)$-isomer 19.4 min$] ;$ a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 396.2024. $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{NO}_{3}{ }^{-}$ SSi requires $M+\mathrm{H}, 396.2028]$; $[a]_{\mathrm{D}}^{29}-0.74$ ($c 1.44$ in CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-0.09(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}),-0.06(3 \mathrm{H}, \mathrm{s}$, SiMe), 0.79 ($9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}$), $2.29(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, $2.69(6 \mathrm{H}, \mathrm{s}$, $2 \times \mathrm{CMe}), 3.07(1 \mathrm{H}$, ddd, $J 7.3,5.9$ and $5.9,3-\mathrm{H}), 3.44(1 \mathrm{H}$, dd, $J .3$ and $6.8,2-\mathrm{H}), 3.58(1 \mathrm{H}, \mathrm{dd}, J 11.6$ and 5.9 , OCHH), $3.61(1 \mathrm{H}, \mathrm{dd}, J 11.6$ and $5.9, \mathrm{OCH} H), 5.28(1 \mathrm{H}$, ddd, $J 10.3$, 1.1 and $0.5, \mathrm{C}=\mathrm{CHH})$, $5.41(1 \mathrm{H}$, ddd, J 17.0, 2.2 and 1.1, $\mathrm{C}=\mathrm{CH} H), 5.66\left(1 \mathrm{H}\right.$, ddd, $J 17.0,10.3$ and $\left.6.8, \mathrm{C} H=\mathrm{CH}_{2}\right), 6.94$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}$); m / z (FAB-LRMS) $396\left(\mathrm{MH}^{+}\right), 366,338,308,241$, 212, 177, 154, 119, 73 (base peak). Compound 65: 98% ee $(2 R, 3 S)$ by HPLC [Daicel Chiralcel OD, n-hexane-propan-2ol = 99.5:0.5 $\left(0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right),(2 R, 3 S)$-isomer 26.3 min$]$; a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 396.2037. $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{NO}_{3}{ }^{-}$ SSi requires $M+\mathrm{H}$, 396.2028]; [a] $]_{\mathrm{D}}^{29}-38.7$ (c 2.35, CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-0.13(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}),-0.10(3 \mathrm{H}, \mathrm{s}$, $\mathrm{SiMe}), 0.78\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 2.28(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.69(6 \mathrm{H}, \mathrm{s}$, $2 \times \mathrm{CMe})$, $3.18(1 \mathrm{H}, \mathrm{ddd}, J 5.4,4.3$ and $4.1,3-\mathrm{H}), 3.22(1 \mathrm{H}$, dd, $J 9.2$ and $4.3,2-\mathrm{H}), 3.60(1 \mathrm{H}, \mathrm{dd}, J 11.6$ and $5.4, \mathrm{OCHH})$, $3.75(1 \mathrm{H}, \mathrm{dd}, J 11.6$ and $4.1, \mathrm{OCH} H), 5.36(1 \mathrm{H}, \mathrm{dd}, J 10.3$ and $0.8, \mathrm{C}=\mathrm{C} H \mathrm{H}), 5.51(1 \mathrm{H}, \mathrm{dd}, J 16.7$ and $0.8, \mathrm{C}=\mathrm{CH} H), 6.12$ (1 H, ddd, $J 16.7,10.3$ and $9.2, \mathrm{CH}=\mathrm{CH}_{2}$), $6.92(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}) ; ~ m / z$ (FAB-LRMS) $396\left(\mathrm{MH}^{+}\right), 366,338,308,241,212,177,154$, 119, 73 (base peak).

General procedure for palladium-catalyzed equilibrated reaction of mixtures of 2,3-cis- and 2,3-trans-aziridines 54, 56, 58, 60, 62, 64, 66, 68 and 55, 57, 59, 61, 63, 65, 67, 69: equilibrated reaction of a mixture of $(2 R, 3 R)$-2-tert-butyldimethylsiloxymethyl- N -(2,4,6-trimethylphenylsulfonyl)-3-vinylaziridine 64 and its ($2 R, 3 S$)-isomer 65

A 51:49 mixture of 2,3-cis- and 2,3-trans-aziridines $\mathbf{6 4}$ and $\mathbf{6 5}$ $(68 \mathrm{mg}, 0.172 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(7.9 \mathrm{mg}, 0.0069 \mathrm{mmol}$, $4 \mathrm{~mol} \%$) in dry THF ($3 \mathrm{~cm}^{3}$) was stirred at $0^{\circ} \mathrm{C}$ for 2 h . The mixture was concentrated under reduced pressure to leave an oil, which was flash chromatographed over silica gel with n-hexane-EtOAc (12:1) to give the title compounds $64(57 \mathrm{mg}$, 83%) and $65(4.3 \mathrm{mg}, 7 \%)$.

Synthesis of (2R,3R)-2-benzyloxymethyl- N-(2,4,6-trimethyl-phenylsulfonyl)-3-vinylaziridine 66 and its ($2 R, 3 S$)-isomer 67 from the mesylate 48

By a procedure identical with that described for the aziridination of 26, the allylic mesylate $\mathbf{4 8}(234 \mathrm{mg}, 0.5 \mathrm{mmol})$ was converted into a $51: 49$ mixture of the title compounds 66 and 67 ($125 \mathrm{mg}, 67 \%$ combined yield) by treatment with NaH followed by flash chromatography over a short silica gel column with n-hexane-EtOAc (8:1). The mixture was flash chromatographed over silica gel. Elution with n-hexane- $\mathrm{CHCl}_{3}-\mathrm{EtOAc}$ ($20: 5: 1$) gave 67 ($61 \mathrm{mg}, 33 \%$) and further elution yielded 66 ($64 \mathrm{mg}, 34 \%$). Compound $\mathbf{6 6}$: 98% ee $(2 R, 3 R)$ by HPLC [Daicel Chiralcel OD, n-hexane-propan-2-ol $=99.0: 1.0 \quad\left(0.5 \mathrm{~cm}^{3}\right.$ $\left.\mathrm{min}^{-1}\right)$, $(2 R, 3 R)$-isomer 54.0 min]; a colourless oil [Found
(FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 372.1632. $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S}$ requires $M+\mathrm{H}$, 372.1633]; $[a]_{\mathrm{D}}^{31}-0.86\left(c 0.463\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 2.28 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), $2.70(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}$), 3.18 (1 H , ddd, $J 7.3$, 6.5 and $5.9,3-\mathrm{H}), 3.45(1 \mathrm{H}, \mathrm{dd}, J 7.3$ and $6.5,2-\mathrm{H}), 3.47(1 \mathrm{H}$, dd, $J 11.1$ and $6.5, \mathrm{BnOCHH}), 3.54(1 \mathrm{H}, \mathrm{dd}, J 11.1$ and 5.9 , $\mathrm{BnOCH} H), 4.38(1 \mathrm{H}, \mathrm{d}, J 11.9, \mathrm{PhCHH}), 4.39(1 \mathrm{H}, \mathrm{d}, J 11.9$, $\mathrm{PhCH} H), 5.27(1 \mathrm{H}$, ddd, $J 10.3,1.6$ and $0.5, \mathrm{C}=\mathrm{CHH})$, 5.40 (1 H , ddd, $J 17.3,1.6$ and $0.8, \mathrm{C}=\mathrm{CH} H$), $5.69(1 \mathrm{H}$, ddd, $J 17.3$, 10.3 and $\left.6.5, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.94(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 7.14-7.34(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}) ; m / z$ (FAB-LRMS) $372\left(\mathrm{MH}^{+}\right), 342,188,183,159,119,91$ (base peak). Compound 67: 98% ee $(2 R, 3 S)$ by HPLC [Daicel Chiralcel OD, n-hexane-propan-2-ol $=99.0: 1.0 \quad\left(0.5 \mathrm{~cm}^{3}\right.$ $\left.\mathrm{min}^{-1}\right),(2 R, 3 S)$-isomer 48.5 min$]$; colourless prisms. $\mathrm{mp} 64^{\circ} \mathrm{C}$ [from n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (4:1)] [Found (FAB): $\left(\mathrm{M}+\mathrm{H}^{+}\right.$, 372.1637. $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{3}$ S requires $\left.M+\mathrm{H}, 372.1633\right]$; $[a]_{\mathrm{D}}^{31}-39.2(c$ 1.31 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.28(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.69$ $(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 3.22(1 \mathrm{H}, \mathrm{dd}, J 8.8$ and $4.2,2-\mathrm{H}), 3.24(1 \mathrm{H}$, ddd, $J 5.1,4.3$ and $4.2,3-\mathrm{H})$, $3.51(1 \mathrm{H}, \mathrm{dd}, J 11.1$ and 5.1 , BnOCHH), 3.68 (1 H , dd, J 11.1 and 4.3, $\mathrm{BnOCH} H$), 4.35 ($1 \mathrm{H}, \mathrm{d}, J 12.1, \mathrm{PhCHH}), 4.38(1 \mathrm{H}, \mathrm{d}, J$ 12.1, PhCHH), 5.36 ($1 \mathrm{H}, \mathrm{dd}, J 10.2$ and $1.0, \mathrm{C}=\mathrm{CHH}$), $5.49(1 \mathrm{H}, \mathrm{dd}, J 17.1$ and 1.1 , $\mathrm{C}=\mathrm{CH} H), 6.07\left(1 \mathrm{H}\right.$, ddd, $J 17.1,10.2$ and $\left.8.8, \mathrm{C} H=\mathrm{CH}_{2}\right), 6.93$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}$), 7.10-7.13 (2 H, m, Ph), 7.24-7.30 (3 H, m, Ph); m/z (FAB-LRMS) $372\left(\mathrm{MH}^{+}\right), 280,243,188,183,159,119,105,91$ (base peak), 73 .

Synthesis of ($\mathbf{3 R}, 4 R, 5 R$)-5-tert-butyldimethylsiloxy)-3,4-epimino- N-(p-tolylsulfonyl)hex-1-ene 68 and its ($3 S, 4 R, 5 R$)isomer 69 from the mesylate 49

By a procedure similar to that described for the aziridination of 26, the allylic mesylate 49 ($191 \mathrm{mg}, 0.4 \mathrm{mmol}$) was converted into a mixture of 2,3-cis- and 2,3-trans-aziridines 68 and 69 ($\mathbf{6 8}: \mathbf{6 9}=8: 92$) by treatment with NaH in DMF. The mixture was flash chromatographed over silica gel. Elution with n -hexane- CHCl_{3}-EtOAc (20:5:1) gave 69 ($81 \mathrm{mg}, 53 \%$) and further elution yielded 68 ($7 \mathrm{mg}, 5 \%$). Compound 68: 98% ee ($3 R, 4 R, 5 R$) by HPLC [Daicel Chiralcel OD, n-hexane-propan-2-ol = 99.4:0.6 ($\left.0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right),(3 R, 4 R, 5 R)$-isomer 26.3 min$]$; a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 382.1877. $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NO}_{3}{ }^{-}$ SSi requires $M+\mathrm{H}, 382.1872]$; $[a]_{\mathrm{D}}^{32}+0.78\left(c 2.04\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-0.16(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}),-0.04(3 \mathrm{H}, \mathrm{s}$, SiMe), 0.78 ($9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}$), 1.13 ($3 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{CMe}$), 2.43 (3 H , s, CMe), $2.93(1 \mathrm{H}, \mathrm{dd}, J 8.6$ and $7.3,4-\mathrm{H}), 3.36(1 \mathrm{H}$, dd, $J .3$ and 7.3, 3-H), $3.52(1 \mathrm{H}, \mathrm{dq}, J 8.6$ and $6.2,5-\mathrm{H}), 5.29(1 \mathrm{H}$, ddd, $J 10.0,1.9$ and $0.8,1-\mathrm{C} H \mathrm{H}), 5.44(1 \mathrm{H}, \mathrm{dd}, J 17.1$ and 1.6 , $1-\mathrm{CH} H), 5.57$ (1 H , ddd, $J 17.3,10.0$ and $7.3,2-\mathrm{H}), 7.30-7.33$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $7.80-7.85$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m / z (FAB-LRMS) 382 $\left(\mathrm{MH}^{+}\right), 366,338,324,280$ (base peak), 226, 213, 159, 139, 115, 73. Compound 69: 98\% ee ($3 S, 4 R, 5 R$) by HPLC [Daicel Chiralcel OD, n-hexane-propan-2-ol $=99.4: 0.6 \quad\left(0.5 \mathrm{~cm}^{3}\right.$ $\min ^{-1}$), ($3 S, 4 R, 5 R$)-isomer 38.2 min]; a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 382.1866. $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{SSi}$ requires $M+\mathrm{H}$, $382.1872]$; $[a]_{\mathrm{D}}^{31}-31.2\left(c 0.746\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $-0.15(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}),-0.06(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.80\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right)$, 1.13 ($3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}$), 2.43 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 3.12 (1 H , dd, $J 5.1$ and $4.3,4-\mathrm{H}), 3.19(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and $4.3,3-\mathrm{H}), 3.72(1 \mathrm{H}$, qd, $J 6.5$ and $5.1,5-\mathrm{H}), 5.42(1 \mathrm{H}, \mathrm{dd}, J 10.0$ and $0.8,1-\mathrm{CHH})$, $5.51(1 \mathrm{H}, \mathrm{dd}, J 16.7$ and $1.1,1-\mathrm{CH} H), 6.21(1 \mathrm{H}$, ddd, $J 16.7$, 10.0 and $9.5,2-\mathrm{H}), 7.28-7.31(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.82-7.85(2 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}) ; m / z$ (FAB-LRMS) $382\left(\mathrm{MH}^{+}\right)$, 338, 324, 280 (base peak), 226, 213, 159, 139, 115, 73.
tert-Butyl ($4 R, 5 S, 6 S, 2 E)$-6-methyl-4,5-epimino-N-(4-methoxy-2,3,6-trimethylphenylsulfonyl)oct-2-enoate 70
Ozone was bubbled through a solution of the vinylaziridine 62 $(300 \mathrm{mg}, 0.889 \mathrm{mmol})$ in a mixed solvent of $\mathrm{CHCl}_{3}\left(5 \mathrm{~cm}^{3}\right)$ and n-hexane ($3 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$ for 40 min . Zn powder $(0.25 \mathrm{~g})$ was added to the mixture at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h with warming to $0^{\circ} \mathrm{C}$. The inorganic precipitates were
removed by filtration through a short pad of SiO_{2} with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated under reduced pressure to give a crude aldehyde as an oil. To a stirred suspension of $\mathrm{LiCl}(75$ $\mathrm{mg}, 1.78 \mathrm{mmol})$ in $\mathrm{MeCN}\left(3 \mathrm{~cm}^{3}\right)$ under argon at room temperature were added tert-butyl diethylphosphonoacetate (0.45 $\mathrm{g}, 1.78 \mathrm{mmol}$) and N, N-diisopropylethylamine $\left(0.31 \mathrm{~cm}^{3}, 1.78\right.$ mmol), and the mixture was cooled to $0^{\circ} \mathrm{C}$. To the above reagent, the crude aldehyde in $\mathrm{MeCN}\left(3 \mathrm{~cm}^{3}\right)$ was added at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h with warming to room temperature. The mixture was made acidic with saturated aqueous citric acid followed by concentration under reduced pressure to yield an oily residue. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and the solution was washed successively with $\mathrm{H}_{2} \mathrm{O}, 5 \%$ aqueous NaHCO_{3}, and $\mathrm{H}_{2} \mathrm{O}$, and dried over MgSO_{4}. Usual work-up followed by flash chromatography over silica gel with n-hexaneEtOAc (6:1) gave the title compound $70(330 \mathrm{mg}, 85 \%$ yield) as colourless crystals, $\mathrm{mp} 83-85^{\circ} \mathrm{C}$ (from n-hexane) (Found: C, $63.0 ; \mathrm{H}, 8.1 ; \mathrm{N}, 3.0 . \mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NO}_{5} \mathrm{~S}$ requires $\mathrm{C}, 63.1 ; \mathrm{H}, 8.1 ; \mathrm{N}$, $3.2 \%) ;[a]_{\mathrm{D}}^{26}-48.6\left(c 0.951\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.78$ ($3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CMe}$), $0.85(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}), 1.04-1.40(3 \mathrm{H}$, $\mathrm{m}, 6-\mathrm{H}$ and $\left.7-\mathrm{CH}_{2}\right), 1.48\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 2.16$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), $2.67(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.69(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.74(1 \mathrm{H}, \mathrm{dd}, J 9.7$ and $7.8,5-\mathrm{H}), 3.41(1 \mathrm{H}, \mathrm{dd}, J 7.8$ and $6.8,4-\mathrm{H}), 3.86(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $6.01(1 \mathrm{H}, \mathrm{d}, J 15.6,2-\mathrm{H}), 6.57(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 6.59(1 \mathrm{H}, \mathrm{dd}, J 15.6$ and $6.8,3-\mathrm{H})$.

tert-Butyl (2R,5S,6S,3E)-2-isopropyl-6-methyl-5-[N-(4-meth-oxy-2,3,6-trimethylphenylsulfonyl)amino]oct-3-enoate 71

To a stirred solution of $\mathrm{CuCN}(108 \mathrm{mg}, 1.2 \mathrm{mmol})$ and LiCl ($102 \mathrm{mg}, 2.4 \mathrm{mmol}$) in dry THF ($2 \mathrm{~cm}^{3}$) under argon was added by syringe isopropylmagnesium chloride $\left(1.3 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ solution in THF; $0.93 \mathrm{~cm}^{3}, 1.2 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$, and the mixture was allowed to warm to $0^{\circ} \mathrm{C}$ and stirred at this temperature for 5 min . The enoate $70(132 \mathrm{mg}, 0.3 \mathrm{mmol})$ in dry THF $\left(2 \mathrm{~cm}^{3}\right)$ was added dropwise to the above reagent at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min followed by quenching with a $1: 1$ solution ($8 \mathrm{~cm}^{3}$) of saturated $\mathrm{NH}_{4} \mathrm{Cl}-28 \% \mathrm{NH}_{4} \mathrm{OH}$. The whole was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the extract was washed with $\mathrm{H}_{2} \mathrm{O}$, and dried over MgSO_{4}. Usual work-up followed by flash chromatography over silica gel with n-hexane-EtOAc $(5: 1)$ gave the title compound $71(136 \mathrm{mg}, 94 \%$ yield) as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}, 482.2932 . \mathrm{C}_{26} \mathrm{H}_{44} \mathrm{NO}_{5} \mathrm{~S}$ requires $M+\mathrm{H}, 482.2940] ;[a]_{\mathrm{D}}^{24}-50.4\left(c 0.164\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.69(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}), 0.79(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe})$, 0.817 ($3 \mathrm{H}, \mathrm{d}, J 6.2$, CMe), 0.822 ($3 \mathrm{H}, \mathrm{t}, J 7.3$, CMe), $0.98-1.14$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$), 1.25-1.44 (1 H, m, CH), $1.40\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right)$, $1.46-1.63(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.72-1.85(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.13(3 \mathrm{H}, \mathrm{s}$, CMe), $2.40(1 \mathrm{H}, \mathrm{dd}, J 8.1$ and $8.1,2-\mathrm{H}), 2.57(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, $2.67(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.62(1 \mathrm{H}$, ddd, $J 7.6,7.3$ and $5.4,5-\mathrm{H}), 3.84$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.46(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{NH}), 5.26(1 \mathrm{H}, \mathrm{dd}, J 15.1$ and $7.3,4-\mathrm{H}), 5.31(1 \mathrm{H}, \mathrm{dd}, J 15.1$ and $8.1,3-\mathrm{H}), 6.55(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$; m / z (FAB-LRMS) $482\left(\mathrm{MH}^{+}\right), 480,424,380,368,298,268$, 230, 213 (base peak), 197, 149, 119, 95, 57, 41.

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research (B) and (C) from the Ministry of Education, Science, Sports and Culture, Japan, to which the author's thanks are due.

References

1 E. J. Moran, J. E. Tellew, Z. Zhao and R. W. Armstrong, J. Org. Chem., 1993, 58, 7848.
2 (a) G. W. Spears, K. Nakanishi and Y. Ohfune, Synlett, 1991, 91; (b) D. Tanner and P. Somfai, Bioorg. Med. Chem. Lett., 1993, 3, 2415; (c) for a review of cyclization reactions of amino allylic alcohols, see Y. Hirai and H. Yokoyama, J. Synth. Org. Chem. Jpn., 1998, 56, 50.

3 F. A. Davis, G. V. Reddy and H. Liu, J. Am. Chem. Soc., 1995, 117, 3651.

4 (a) J. Åhman, T. Jarevång and P. Somfai, J. Org. Chem., 1996, 61, 8148; (b) J. Åhman and P. Somfai, J. Am. Chem. Soc., 1994, 116, 9781; (c) J. Åhman and P. Somfai, Tetrahedron Lett., 1996, 37, 2495.
5 J. Åhman and P. Somfai, Tetrahedron Lett., 1995, 36, 303; J. Åhman and P. Somfai, Tetrahedron, 1995, 51, 9747.
6 T. Hudlicky, J. O. Frazier, G. Seoane, M. Tiedje, A. Seoane, L. D. Kwart and C. Beal, J. Am. Chem. Soc., 1986, 108, 3755; T. Hudlicky, G. Seoane and T. C. Lovelace, J. Org. Chem., 1988, 53, 2094; T. Hudlicky, H. Luna, J. D. Price and F. Rulin, J. Org. Chem., 1990, 55, 4683; W. H. Pearson, S. C. Bergmeier, S. Degan, K.-C. Lin, Y.-F. Poon, J. M. Schkeryantz and J. P. Williams, J. Org. Chem., 1990, 55, 5719.
7 (a) J. Åhman, P. Somfai and D. Tanner, J. Chem. Soc., Chem. Commun., 1994, 2785; (b) P. Somfai and J. Åhman, Tetrahedron Lett., 1995, 36, 1953.
8 (a) A. A. Cantrill, A. N. Jarvis, H. M. I. Osborn, A. Ouadi and J. B. Sweeney, Synlett, 1996, 847; (b) H. Aoyama, N. Mimura, H. Ohno, K. Ishii, A. Toda, H. Tamamura, A. Otaka, N. Fujii and T. Ibuka, Tetrahedron Lett., 1997, 38, 7383.

9 F. A. Davis and G. V. Reddy, Tetrahedron Lett., 1996, 37, 4349.
10 U. M. Lindström and P. Somfai, J. Am. Chem. Soc., 1997, 119, 8385.
11 (a) T. Ibuka, K. Nakai, H. Habashita, Y. Hotta, N. Fujii, N. Mimura, Y. Miwa, T. Taga and Y. Yamamoto, Angew. Chem., Int. Ed. Engl., 1994, 33, 652; (b) P. Wipf and P. C. Fritch, J. Org. Chem., 1994, 59, 4875; (c) N. Fujii, K. Nakai, H. Tamamura, A. Otaka, N. Mimura, Y. Miwa, T. Taga, Y. Yamamoto and T. Ibuka, J. Chem. Soc., Perkin Trans. 1, 1995, 1359; (d) A. Satake, I. Shimizu and Y. Yamamoto, Synlett, 1995, 64; (e) P. Wipf and T. C. Henninger, J. Org. Chem., 1997, 62, 1586.

12 (a) T. Ibuka, H. Habashita, S. Funakoshi, N. Fujii, Y. Oguchi, T. Uyehara and Y. Yamamoto, Angew. Chem., Int. Ed. Engl., 1990, 29, 801; (b) T. Ibuka, H. Habashita, A. Otaka, N. Fujii, Y. Oguchi, T. Uyehara and Y. Yamamoto, J. Org. Chem., 1991, 56, 4370; (c) T. Ibuka, T. Taga, H. Habashita, K. Nakai, H. Tamamura, N. Fujii, Y. Chounan, H. Nemoto and Y. Yamamoto, J. Org. Chem., 1993, 58, 1207; (d) D. Gryko, Z. Urbanczyk-Lipkowska and J. Jurczak, Tetrahedron: Asymmetry, 1997, 8, 4059.

13 (a) G. J. Hanson and T. Lindberg, J. Org. Chem., 1985, 50, 5399; (b) S. Thaisrivongs, D. T. Pals, L. T. Kroll, S. R. Turner and F.-S. Han, J. Med. Chem., 1987, 30, 976; (c) P. G. M. Wuts, S. R. Putt and A. R. Ritter, J. Org. Chem., 1988, 53, 4503; (d) W. J. Thompson, T. J. Tucker, J. E. Schwering and J. L. Barnes, Tetrahedron Lett., 1990, 31, 6819; (e) D. J. Kempf, X. C. Wang and S. G. Spanton, Int. J. Pept. Protein Res., 1991, 38, 237; (f) B. E. Green, X. Chen, D. W. Norbeck and D. J. Kempf, Synlett, 1995, 613.

14 Y.-K. Shue, G. M. Carrera, Jr., and A. M. Nadzan, Tetrahedron Lett., 1987, 28, 3225; Y.-K. Shue, M. D. Tufano and A. M. Nadzan, Tetrahedron Lett., 1988, 29, 4041; Y.-K. Shue, G. M. Carrera, Jr., M. D. Tufano and A. M. Nadzan, J. Org. Chem., 1991, 56, 2107.

15 R. S. Coleman and A. J. Carpenter, Tetrahedron Lett., 1992, 33, 1697.

16 A. Spaltenstein, J. J. Leban, J. J. Huang, K. R. Reinhardt, O. H. Viveros, J. Sigafoos and R. Crouch, Tetrahedron Lett., 1996, 37, 1343.
17 M. Kawai, A. S. Boparai, M. S. Bernatowicz and D. H. Rich, J. Org. Chem., 1983, 48, 1876; L. S. L. de Gaeta, M. Czarniecki and A. Spaltenstein, J. Org. Chem., 1989, 54, 4004 and references cited.

18 (a) M. Wada, R. Doi, R. Hosotani, R. Higashide, T. Ibuka, H. Habashita, K. Nakai, N. Fujii and M. Imamura, Pancreas, 1995, 10, 301; (b) K. Miyasaka, S. Kanai, M. Masuda, T. Ibuka, K. Nakai, N. Fujii and S. Funakoshi, J. Auton. Nerv. Syst., 1997, 63, 179; (c) K. Fujimoto, R. Doi, R. Hosotani, M. Wada, J.-U. Lee, T. Koshiba, T. Ibuka, H. Habashita, K. Nakai, N. Fujii and M. Imamura, Life Sci., 1997, 60, 29.

19 J. Tsuji, I. Shimizu, I. Minami and Y. Ohashi, Tetrahedron Lett., 1982, 23, 4809; J. Tsuji, I. Shimizu, I. Minami, Y. Ohashi, T. Sugiura and K. Takahashi, J. Org. Chem., 1985, 50, 1523.
20 J. Tsuji, Palladium Reagents and Catalysis, Wiley, New York, 1995; J. Tsuji and I. Minami, Acc. Chem. Res., 1987, 20, 140; J. Tsuji, Tetrahedron, 1986, 42, 4361.
21 (a) K. Fugami, Y. Morizawa, K. Oshima and H. Nozaki, Tetrahedron Lett., 1985, 26, 857; (b) N. Mimura, T. Ibuka, M. Akaji, Y. Miwa, T. Taga, K. Nakai, H. Tamamura, N. Fujii and Y. Yamamoto, Y. Chem. Commun., 1996, 351 and 1399; (c) T. Ibuka, N. Mimura, H. Aoyama, M. Akaji, H. Ohno, Y. Miwa, T. Taga, K. Nakai, H. Tamamura, N. Fujii and Y. Yamamoto, J. Org. Chem., 1997, 62, 999; (d) synthesis of activated 2-vinylaziridines from 1,4-amino alcohols has appeared recently, see H. F. Olivo, M. S. Hemenway, A. C. Hartwig and R. Chan, Synlett, 1998, 247.
22 (a) T. Ibuka, M. Akaji, N. Mimura, H. Habashita, K. Nakai, H. Tamamura, N. Fujii and Y. Yamamoto, Tetrahedron Lett., 1996,

37, 2849; (b) T. Ibuka, N. Mimura, H. Ohno, K. Nakai, M. Akaji, H. Habashita, H. Tamamura, Y. Miwa, T. Taga, N. Fujii and Y. Yamamoto, J. Org. Chem., 1997, 62, 2982; (c) H. Ohno, N. Mimura, A. Otaka, H. Tamamura, N. Fujii, T. Ibuka, I. Shimizu, A. Satake and Y. Yamamoto, Tetrahedron, 1997, 53, 12933.

23 R. Ramage and J. Green, Tetrahedron Lett., 1987, 28, 2287; J. Green, O. M. Ogunjobi, R. Ramage and A. S. J. Stewart, Tetrahedron Lett., 1988, 29, 4341.
24 M. Fujino, M. Wakimatsu and C. Kitada, Chem. Pharm. Bull., 1981, 29, 2825.
25 M. J. McKennon, A. I. Meyers, K. Drauz and M. Schwarm, J. Org. Chem., 1993, 58, 3568.
26 M.-C. Fournié-Zaluski, P. Coric, S. Turcaud, L. Bruetschy, E. Luce,
F. Noble and B. P. Roques, J. Med. Chem., 1992, 35, 1259;
C. Bennion, S. Connolly, N. P. Gensmantel, C. Hallam, C. G.

Jackson, W. U. Primrose, G. C. K. Roberts, D. H. Robinson and P. K. Slaich, J. Med. Chem., 1992, 35, 2939.

27 V. J. Hruby and K. W. Ehler, J. Org. Chem., 1970, 35, 1690; H. Sugano and M. Miyoshi, J. Org. Chem., 1976, 41, 2352.

28 P. Coutrot, A. Elgadi and C. Grison, Heterocycles, 1989, 28, 1179; F. A. Davis and P. Zhou, Tetrahedron Lett., 1994, 35, 7525; F. A. Davis, P. Zhou and G. V. Reddy, J. Org. Chem., 1994, 59, 3243; F. E. Ziegler and M. Belema, J. Org. Chem., 1994, 59, 7962.

29 (a) B. M. Trost and T. P. Klun, J. Org. Chem., 1980, 45, 4256; (b) R. W. Hoffmann, Chem. Rev., 1989, 89, 1841; (c) S. D. Kahn, C. F. Pau, A. R. Chamberlin and W. J. Hehre, J. Am. Chem. Soc., 1987, 109, 650.

